#### getting into it

### new technologies for intracellular cargo delivery

**TECHNICAL JOURNAL CLUB 19TH MAY 2015** 

KARL FRONTZEK
INSTITUTE OF NEUROPATHOLOGY

#### **Intracellular delivery**



i p





#### Intracellular delivery

NATURE VOL. 327 7 MAY 1987

-LETTERS TO NATURE







#### Gene transfer into muscle by electroporation in vivo

Hiroyuki Aihara' and Jun-ichi Miyazaki'\*

#### **Brief Communications**

Nature 418, 290-291 (18 July 2002) | doi:10.1038/418290a

Cell biology: Targeted transfection by femtosecond laser

Uday K. Tirlapur & Karsten König

Gene guns
TM Klein et al., Nature 1987

#### Intracellular delivery



Lentiviral packaging www.clontech.com



Adeno-associated virus packaging Mingozzi F & High KA, Nat Rev Genetics 2011

### Intracelullar delivery of native proteins/DNA

"in vitro" surgery



Fig. 1.

Diacumos EG et al., PNAS 1970

### Intracelullar delivery of native compounds

"osmotic lysis of pinocytic vesicles"



## Intracellular delivery with fusion proteins carrying "protein-transduction domains"





trends in Cell Biology

(active)

#### Correspondence

Nature Biotechnology 19, 713 (2001) doi:10.1038/90741

#### Is VP22 nuclear homing an artifact?

Mathias Lundberg1 & Magnus Johansson2

- Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
- Division of Clinical Virology F68, Karolinska Institute, Huddinge University Hospital, S-14186 Stockholm, Sweden (e-mail: magnus.johansson@mbb.ki.se).

(inactive)



## "ITOP" INDUCED TRANSDUCTION BY OSMOCYTOSIS AND PROPANEBETAINE

D'ASTOLFO ET AL., CELL 2015

# Transduction of native protein independent of a "cell-penetrating peptide"



H6 = 6xHis Tag R11 = poly-arginine CPP

# Omitting NaCl and NDSB-201 from the transduction buffer prevents efficient Oct4 protein delivery



NDSB-201: non-detergent Sulfobetaine 201

A: 1M NaCl

B: 50 mM NaH<sub>2</sub>PO<sub>4</sub>

C: 50 mM Tris-HCl

D: 250 mM NDSB-201

E: 100 µM 2-mercaptoethanol

F: 125 μM MgCl<sub>2</sub> G: 125 μM ZnCl<sub>2</sub>



В

# Optimal transduction time is directly proportional to NaCl-induced hyperosmolarity





#### Cl<sup>-</sup> anions are not essential for induction of hypertonicity



### iTOP vs osmotic lysis of pinocytic vesicles

FLUID PHASE PINOCYTOSIS HYPOTONIC CULTURE MEDIUM Okada CY & Rechsteiner M, Cell 1982 Isotonic Control - Lac 3h - iTOP (700 mOsmol/kg) - Lac 12.3 3h - Lac-R11 3.5 OKADA's - Lac 10 15 Relative Beta-Lactamase activity

OSMOTIC LYSIS OF PINOSOMES

SUCROSE, PEG 1000 + M.

#### **Hyperosmolality Causes Growth Arrest of Murine Kidney Cells**

INDUCTION OF GADD45 AND GADD153 BY OSMOSENSING VIA STRESS-ACTIVATED PROTEIN KINASE 2\*

(Received for publication, January 13, 1998, and in revised form, March 16, 1998)

#### Dietmar Kültz‡, Samira Madhany§, and Maurice B. Burg

From the Laboratory of Kidney and Electrolyte Metabolism, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1603



### Hypertonicity induces cell-cycle inhibition





## Glycerol and glycine rescue hypertonicity-induced cell-cycle inhibition



## Addition of glycerol/glycine gives similar transduction efficiacies in MEFs but not in mESCs



#### Multiple rounds of hypertonicity lead to high transduction yield and remain cell viability in sensitive cell lines (i.e. mESC)



# Efficient protein transduction in multiple primary cell types



"mESCs were transduced with Cre protein at 500 mOsmol/kg for 12 hr"

### Cre protein transduction does not disrupt mESC pluripotency and Cre-transduced mESCs contribute to the germline





# iTOP facilitates the efficient transduction of multiple primary cell lines



### **Efficient transduction with iTOP in human ESCs**



### Structural Features of the Transduction Compound



# Replacing sulfonate with carboxyl residues + replacing the amine improves cell viability



#### gamma-Aminobutyric acid



### GABA-R (ant-)agonists do not impact transduction



В



25 mM GABA needed for iTOP is 5 logs higher than concentrations needed for neurotransmission

#### GABA has similar properties in increasing protein solubility as NDSB-201 and both amine and carboxyl groups are needed for protein transduction



700 mOsmol/kg (NaCl)

# Determination of the the optimal length of the carbon chain spacer

#### The ideal molecule

- zwitterionic @ neutral pH with
  - (-) + charged amino group
  - (-) charged sulfonyl/carboxyl group
- 3 carbons between N<sub>Rx</sub><sup>+</sup> and SOOO-/COO-groups



Transduction efficiacies are not confounded by differences in protein solubility



## Dissecting the Mechanism of Protein Transduction



Doherty GJ & McMahon HAT Annu Rev Biochemistry 2009

# Protein transduction is mediated by macropinocytosis



#### NHE1 Na+/H+ antiporter function is important for protein transduction through macropinocytosis, which is enhanced through TK-acting growth factors





## Quantifying macropinocytosis and vesicle release







Transduced cells









## Quantifying macropinocytosis and vesicle release



### iTOP for Crispr/Cas9 in primary cells

Charpentier E & Doudna JA Nature 2013









### High salt concentrations and DNA breaks

Proceedings of the National Academy of Sciences of the United States of America

CURRENT ISSUE // ARCHIVE // NEWS & MULTIMEDIA // FOR AUTHORS // ABOUT PNAS COLLECTED

A > Current Issue > vol. 108 no. 51 > Christophe E. Redon, 20281–20282, doi: 10.1073/pnas.1117713109

CrossMark

Cilick for updates

High salt and DNA double-strand breaks

Christophe E. Redon and William M. Bonner<sup>1</sup>





### iTOP does not seem to affect (si)RNA delivery





A In-vitro transcribed sgRNAs (100 nucleotides)





В

#### CRISPR-Cas9 reporter system



Stable integrated lentiviral vector

DSB-induced by CRISPR-Cas9 and posterior gene modification by NHEJ DNA repair system





#### H1 Human ambayania atam cal

D





В

DPH7 sgRNA #2; 11 mutant sequences out of 11 sequences = 100%

```
ATGATGGGCTGTTTCGCCCTGCAAACGGTGGACACCGAGCTGACCGCGGGCTCGGTGGAGTGGTGCCCGCTGCAAGGCT WT
ATGATGGGCTGTTTCGCCCTGCAAACGGTGGACACCGAGCTGACCGAGCTGACCGGTGGAGTGGTGCCCGCTGCAAGGCT D1
ATGATGGGCTGTTTCGCCCTGCAAACGGTGGACACCGAGCTGACCGAGCTGACCGGTGGAGTGGTGCCCGCTGCAAGGCT D21
ATGATGGGCTGTTTCGCCCTGCAAACGGTGGACCGGAGCTGAACCGGTGGAGCTGGAGGCT D27

ATGATGGGCTGTTTCGCCCTGCAAACGGTGGACCCGAGCTGAACCGCGGGACTCGGTGGAGTGGTGCCCGCTGCAAGGCT D27

ATGATGGGCTGTTTCGCCCTGCAAACGGTGGACACCGAGCTGAACCGCGGACTCGGTGGAGTGGTGCCCGCTGCAAGGC +1 [4x]
ATGATGGGCTGTTTCGCCCTGCAAACGGTGGACACCGAGCTGAACCGCAGGCTGAACCGCAAGCC +1 [4x]
```

#### DPH7 sgRNA #6; 12 mutant sequences out of 12 sequences = 100%

### Biallelic deletion efficiacy with iTOP/Crispr-Cas9





# Pluripotency markers are retained in iTOP/Crispr-Cas9 hESCs



# iTOP/Crispr-Cas9 treated hESCs can differentiate into cells of all 3 germ layers



Scale: 500 um

### Summary/critical remarks

#### - Pro:

- Very convenient (no biosafety issues <> Lentivirus, AAV etc), fast (building lentivirus, AAV for a couple of weeks) and cheap technique (250g of NDSB 201 around 100 sFr), 5x transduction buffer
  - 500 mM NaCl, 25 mM NaH<sub>2</sub>PO4, 250 mM NDSB-201, 150 mM glycerol, 75 mM glycine, 1.25 mM MgCl<sub>2</sub>, 1 mM 2-mercaptoethanol at pH 8.0
- Very efficient with almost no cell toxicity
- Works well with primary cell lines (<> Crispr/Cas9 not so much)

#### - Contra:

- Only transient transfection
- If applied more than 2 rounds > cell viability?
- Authors claim possibily suitable for treatment of genetic disease, no such data evident from present report

#### **WU Y ET AL., NATURE METHODS 2015**

# MASSIVELY PARALLEL DELIVERY OF LARGE CARGO INTO MAMMALIAN CELLS WITH LIGHT PULSES



### Physical approaches to bypass endocytosis

- 1) Create transient pores
- 2) Cargo delivery before pores reseal



**Drop electroporation** 

Guignet EG & Meyer T Nat Methods 2008





#### **Ultrasound**

Mitragotri S Nat Rev Drug Discovery 2005



- Traumatic cell lysis with larger cargos
- > Low throughput

Tao W et al.

**PNAS 1987** 

### Large cargo delivery – a photothermal nanoblade



Wu T et al., Analytical Chemistry 2011

### **BLAST** – biophotonic laser-assisted surgery

tool



a

Cell culture medium

### BLAST - <u>b</u>iophotonic laser-<u>a</u>ssisted <u>s</u>urgery tool

- (i) Cells are cultured or made to adhere on a silicon chip
- (ii) The chip is assembled with a microliter chamber loaded with the cargo to be delivered
- (iii) A nanosecond-pulse laser scans rapidly across the entire chip to generate membrane pores in cells and immediately thereafter the elastic chamber is pressurized to deliver cargo through these transient pores (10s)
- Each batch can deliver cargo into 100'000 cells within the chip area (1cm²)
- Each batch delivery takes 1 min



# Mechanism of opening transient cell-membrane pores



30 ns

60 ns

After

### Rapid bubble bursts are highly localized



### Cargo delivery efficiency and cell viability is dependent on SiO2 hole density and laser energy



Holes/10 µm<sup>2</sup>

### Larger cargo tolerates less delivery delay due to rapid pore resealing



> Complete membrane resealing took more than 10 minutes

### Cargo delivery does not affect neither 3-day cell viability nor cell proliferation



human peripheral blood monocyte—derived macrophages (**PB-MDMs**) primary normal human dermal fibroblasts (**NHDFs**) human primary renal proximal tubule epithelial cells (**RPTECs**) one cancer cell line (**HeLa**)

### Efficient delivery of

- a) 2 µm fluorescent polystyrene beads
- b) 200 nm magnetic beads
- c) anti-tubulin AB
- d) Delivery efficiency of 5 differentially sized polystyrene beads
- e) co-delivery of 100&600 nm beads
- f) Like e) w/o laser pulsing



### The general cell stress sensor heat-shock gene HSPA6 is not upregulated by BLAST

Supplementary Figure 5: Evaluation of stress levels of HeLa cells after BLAST delivery.



# **BLAST** facilitates efficient cytosolic delivery





# **BLAST-induced uptake of Listeria monocytogenes induces actin comet tails**



# **BLAST** allows studying genes important for the replication cycle of *Franciscellae*



## igIC is important for cytosolic replication after phagosomal escape in F. novicida

