
Single-walled carbon nanotubes as diagnostic sensors

in vivo

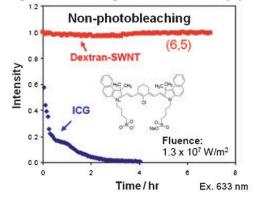
Audrey Fahrny 07.10.14

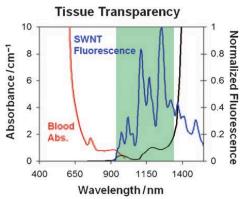
Outline

- CNTs & SWNTs
- SWNT functionalization for biomedical applications
- Current applications
- Paper 1
- Paper 2
- Conclusion & Outlook

Carbon Nanotubes (CNTs)

- First formally prepared in 1991 by lijima
- Nano-scale hollow cylinders comprised of rolled up graphene sheets
 - Graphene sheet = hexagonal arrangement of covalently bonded carbon atoms
 - High aspect-ratio → Quasi 1-D → distinct optical & electrical properties
 - Single-walled or multi-walled carbon nanotubes (SWNTs / MWCTs)





Vardharajula et al. Int. J. Nanomedicine (2012); Boghossian et al. Chem. Sus. Chem. (2011)

Properties of SWNTs

- Physical properties:
 - Strong & flexible
 - Highly hydrophobic surfaces → insoluble in most organic & aqueous solvents
 - Interact with cell membranes and penetrate various biological tissue
 - High surface-to-volume ratio and reduced surface → Electronic properties of SWNTs are very sensitive to their environment
- Electrical properties:
 - CNT can be metallic or semiconducting, depending on chirality
 - Electrical conductivity six orders of magnitude higher than copper
 - Excellent field emitter

- Optical properties:
 - Unique NIR-fluorescence properties
 - Absorption in NIR range: can be utilized for photo thermal therapy & photoacoustic imaging
 - Emission in NIR range: 800-2000nm fluorescence
 - Photostability (no bleaching & no blinking)
 - Distinct resonance enhanced Raman signatures for Raman spectroscopy

Properties of SWNTs

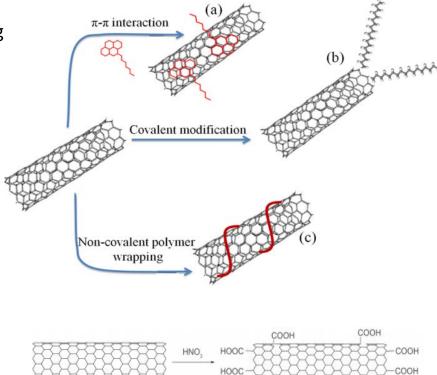
Main advantages for biosensing:

- NIR intrinsic fluorescence & photostability
- Electronic and optical properties of SWNTs are very sensitive to their environment
- --> inherent biosensors with unlimited lifetime

Main issues:

- Solubility
- Toxicity & biocompatibility
 - Bare SWNTs exhibit toxicity in vitro & in vivo
 - Depend on size and morphology of CNTs, surface chemistry, process of purification and functionalization.

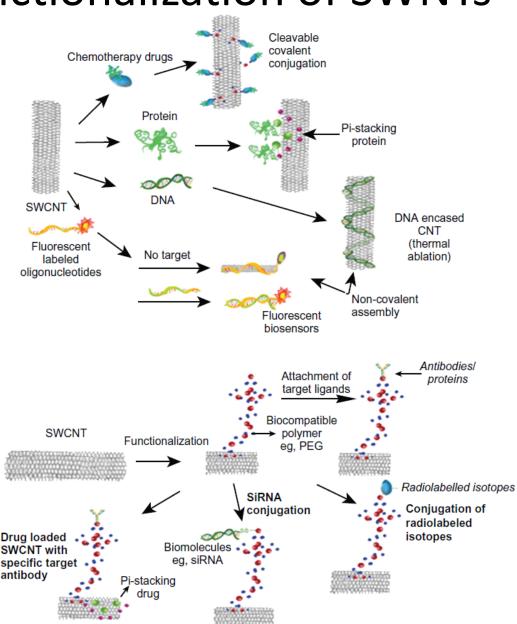
Pharmacokinetics


- Blood circulation half-life & clearance
- Organ bio-distribution and accumulation: after systemic administration, pristine CNTs predominantly localized in liver, lungs and spleen, exhibiting toxic effects

Surface modifications &

Functionalization of SWNTs: a pre-requisit for biological applications

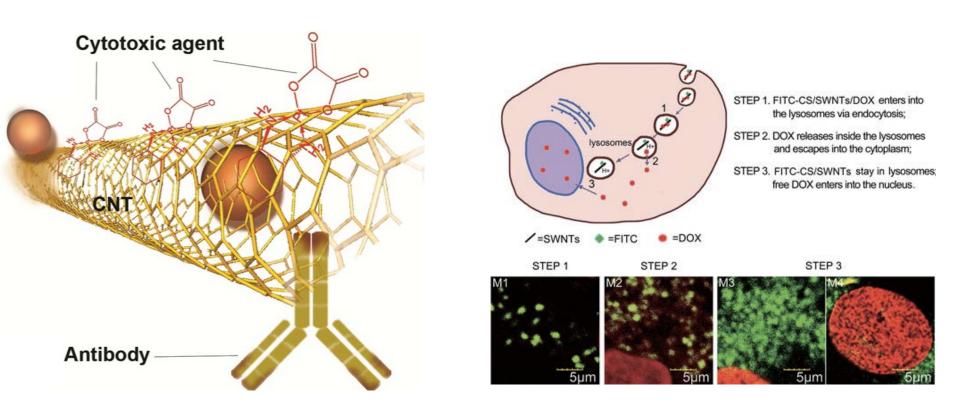
Chemical modifications to solubilize and disperse CNTs; improving biocompatibility and biodegradability, reducing toxicity


- Surfactant coating of CNTs for dispersion: Highly hydrophobic CNT surface interacts with surfactants
- Covalent modifications: Attachment of chemical groups through reactions onto the SWNT skeleton
 - CNT oxidation
 - Intrinsic electrical & optical properties of CNTs often destroyed
- **3. Non-covalent modifications**: Supramolecular adsorption or wrapping of various functional molecules
 - CNTs interact with various molecules through weak interactions: surface adsorption onto sidewalls, π π stacking, electrostatic interactions, hydrogen bonding and van der Waals force

Non-covalent functionalization of SWNTs

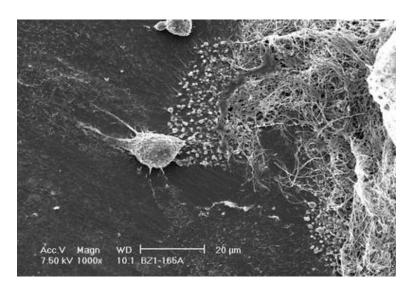
 Conjugation with DNA, proteins, hydrophilic polymers (eg PEG) have all proven to be effective at solubilizing CNTs and rendering them more biocompatible

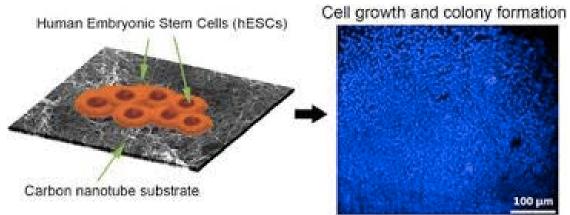
- Further functionalization for specific targeting
- Huge versatility generated by functionalizing CNTs


Therapeutics:

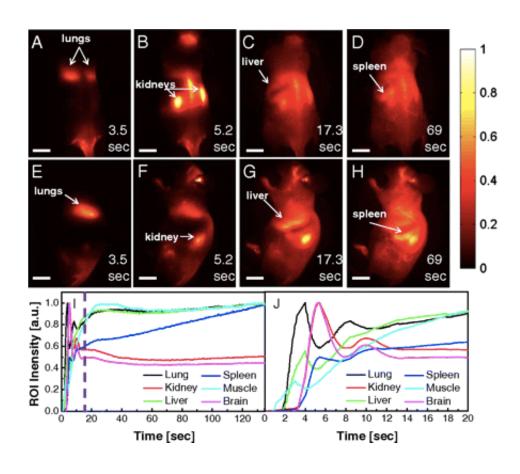
 Delivery vehicles: shuttle various biological molecular cargoes into cells: eg drugs, oligonucleotide molecules

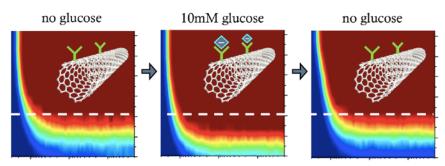
(Z. Liu et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008; 68, 6652–6660)

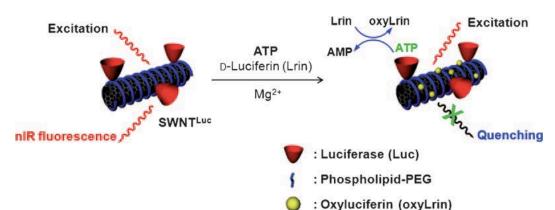

• Cancer therapy: eg photothermal tumor ablation


(X. Liu et al., <u>Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors</u>. Biomaterials 2011;32, 144–151.)

- Scaffold for cell culture & tissue engineering
 - Collagen & polymer fCNT-based matrices


(RA. MacDonald et al. <u>Collagen–carbon nanotube composite materials as scaffolds in tissue engineering.</u> J Biomed Mater Res A. 2005; 74:489–496)


• **Bioimaging**: SWNTs as optical tags or contrast agents

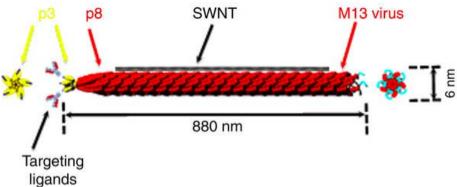

(K. Welsher et al. A route to brightly fluorescent carbon nanotubes for nearinfrared imaging in mice. Nature Nanotech. 2009; 4, 773–780)

BIOSENSING: specific sensing of a wide variety of biological species

- Possibility to perform sensing operation without the use of any labels or complex reaction schemes
- DNA detection
 - (D. A Heller et al. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 2006; 311, 508–511.)
- Protein detection
 - (J. H. Ahn et al. <u>Label-free</u>, <u>single protein detection on a near-infrared fluorescent single-walled carbon nanotube/protein microarray fabricated by cell-free synthesis</u>. Nano Lett. 2011; 11, 2743–2752.)
- Analyte/single-molecule detection
 - (J. H. Kim et al. <u>The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection</u>. Nature Chem. 2009; 1, 473–481.)

ARTICLE

Received 7 Jul 2014 | Accepted 6 Aug 2014 | Published 17 Sep 2014

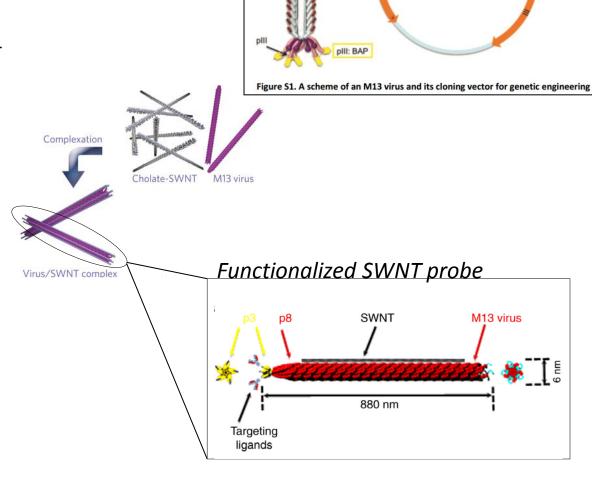

DOI: 10.1038/ncomms5918

Carbon nanotubes as in vivo bacterial probes

Neelkanth M. Bardhan^{1,2}, Debadyuti Ghosh^{1,2,3} & Angela M. Belcher^{1,2,4}

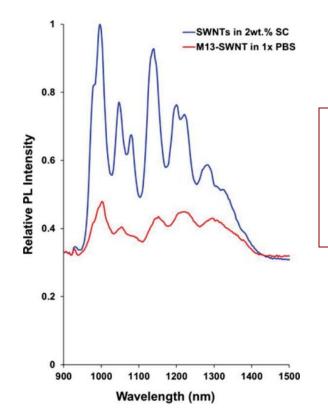
Introduction

- Gold standard nuclear medicine technique for imaging of infectious diseases: targeting bacteria via ex vivo radiolabelled autologous leukocytes
 - exposes patients to radiation, laborious to design and implement, requires specialized equipment and operator training.
- Aim: Targeted non-invasive fluorescence imaging of bacterial infections in vivo, using functionalized SWNT probes
- Strategy: Non-covalent conjugation of SWNTs to engineered-M13 virus phage

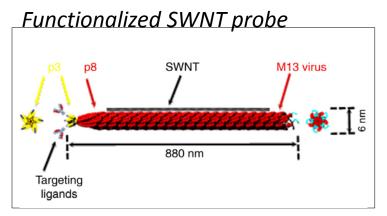

Dispersion & M13-functionalization of SWNTs

Engineered M13 as a multifunctional platform

M13SK

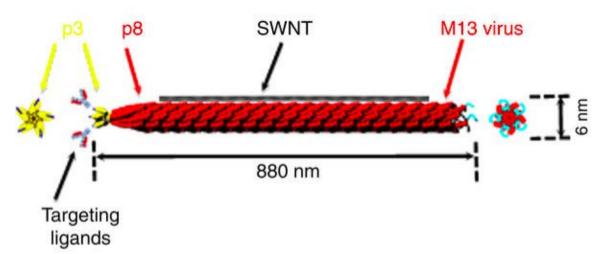

PVIII: fused with SWNT binding motif

- 1. Commercially manufactured "plain" SWNTs
- SWNTs dispersed in 2%(w/v) aqueous sodium cholate (SC-SWNTs)
- 3. Functionalized with **M13**:
 - M13: natural binding affinity towards strains of E. coli (F'-positive)
 - M13 surface capsid proteins genetically engineered to display peptides with multiple functionality (targeting motifs, molecule carriers, fluorescent probes)
 - Phage p8 library constructed to find best SWNT-binding M13 candidate

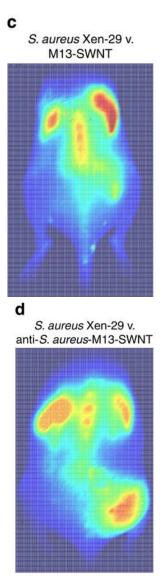


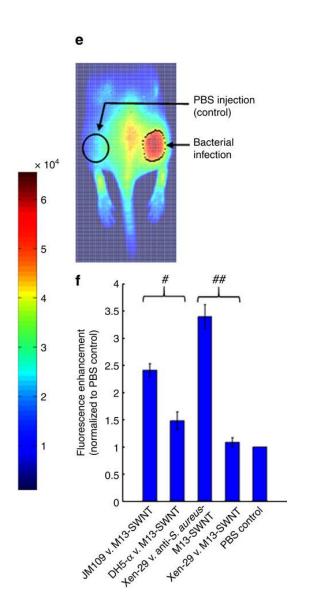
Dispersion & M13-functionalization of SWNTs

- 1. Commercially manufactured "plain" SWNTs
- SWNTs dispersed in 2%(w/v) aqueous sodium cholate (SC-SWNTs)
- 3. Functionalized with **M13**:
 - M13: natural binding affinity towards strains of E. coli (F'-positive)
 - M13 surface capsid proteins genetically engineered to display peptides with multiple functionality (targeting motifs, molecule carriers, fluorescent probes)
 - Phage p8 library constructed to find best SWNT-binding M13 candidate

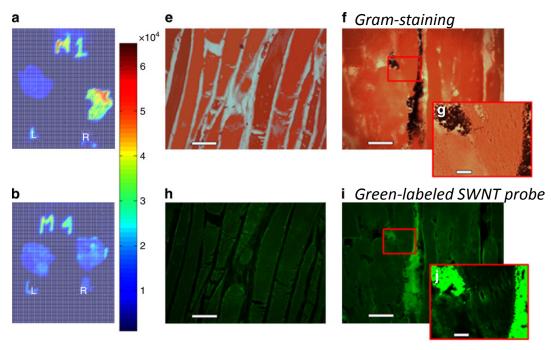


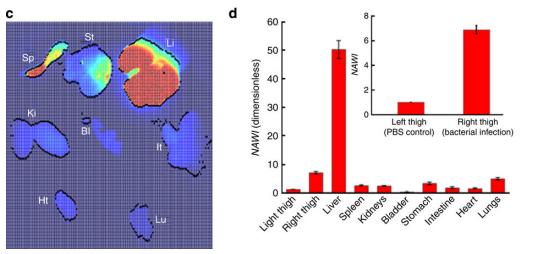
SWNT retains its photoluminescence characteristics upon M13 functionalization


Further functionalization of M13-SWNT probe


- Antibody-M13-SWNT probes for targeting specific bacterial infections
- Modular one-step functionalization of M13 → Antibodybinding system incorporated on p3 coat protein:
 - Express biotin acceptor peptide (BAP) on the p3 coat protein
 - Biotinylation of BAP-M13 → site-specific conjugation of streptavidin-modified targeting moieties
 - Attach specific anti-bacterial antibodies to target specific bacterial infections.

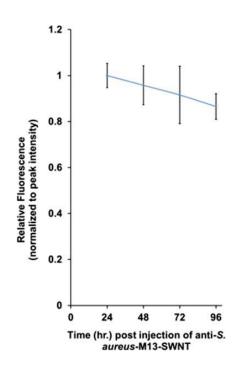
M13-SWNT probes specifically target and allow imaging of various bacterial strains in vivo

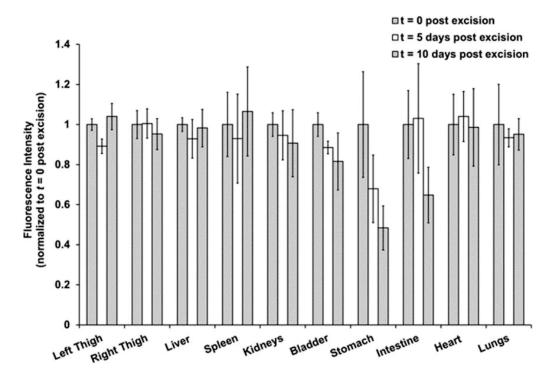

- 1. Established probe specificity & sensitivity in vitro
- 2. Testing anti S. aureus-M13-SWNT probe using a mouse infection model of S. aureus:
 - Targeted probe offers 3.1x enhancement in signal over the untargeted case
 - Tested probe with lower thresholds of bacterial infection: sensitivity remains with one order of magnitude less bacteria
 - Using SWNT probe dosage up to an order of magnitude lower than that used in other reported in vivo applications



Ex vivo validation: anti S. aureus-M13-SWNT probe specially targets and localizes at the site of bacterial infection

- 6.9x increase in probe localization at site of infection compared to control
- Co-localization of bright-field (gram-staining) & fluorescence (SWNT probe) images
 - Correlation coefficient of 0.704±0.053
- Relative probe distribution of SWNT in various organs
 - Maximum probe uptake in liver and spleen
 - Probe in stomach, kidneys and intestine: clearance of fSWNTs

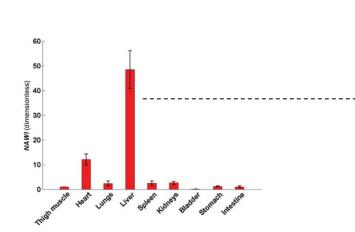


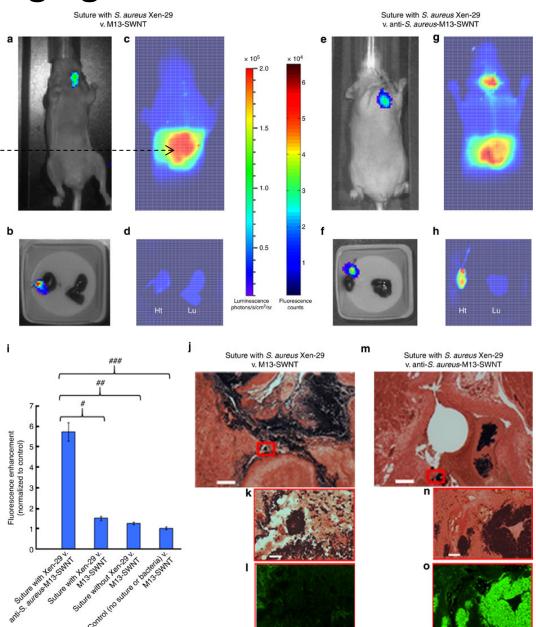

Fluorescence stability

- In vivo fluorescence signal decreases with time BUT:
- Over 96hrs SWNT probe is clearly distinguishable, with fluorescence signal ~85% of peak intensity.

Ex vivo:

- Most tissues retain up to >91% and >82% of their initial fluorescence signal intensity at t = 5 and 10 days respectively.
- Superior fluorescence stability of the SWNT probe compared to conventional dye fluorophores such as fluorescein derivatives (fluorescence half-lives ~10s of seconds)




Deep-tissue in vivo imaging of bacterial endocarditis

- Established model of S. aureus endocarditis
- Bioluminescence from Xen-29 S. aureus strain vs. NIR-II fluorescence from SWNT probe

With targeted probe:

- Highly specific detection of deeptissue infection
- 3.8x enhancement in the fluorescence intensity over the nonspecific case
- Co-localization of ex vivo fluorescence signal from <u>targeted</u> <u>probe</u> with gram-staining

Summary

New method using tunable **SWNT probes for in vivo targeting and fluorescence optical imaging of bacterial infections:**

- Biologically functionalized whilst retaining high NIR-photoluminescence
 - Engineer M13 for detection of a wide range of pathogens
 - Low dose achieving high contrast detection for minimizing patient exposure

• SWNTs probes as a non-ionizing, relatively less expensive alternative NIR-II imaging modality for non-invasive detection and monitoring of infectious diseases in the body

Drawbacks:

- Pharmacokinetics & biodistribution
- Strong signal in liver: may hinder imaging

PUBLISHED ONLINE: 3 NOVEMBER 2013 | DOI: 10.1038/NNANO.2013.222

In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes

Nicole M. Iverson^{1,2}, Paul W. Barone¹, Mia Shandell¹, Laura J. Trudel², Selda Sen^{1,3}, Fatih Sen^{1,4}, Vsevolod Ivanov², Esha Atolia², Edgardo Farias², Thomas P. McNicholas¹, Nigel Reuel¹, Nicola M. A. Parry⁵, Gerald N. Wogan² and Michael S. Strano¹*

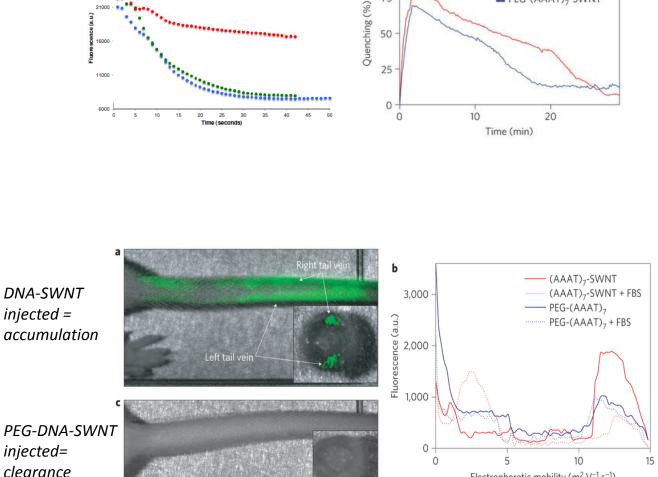
Introduction

- Current technology allows for in vivo NO detection using an electrochemical probe surgically implanted in a rat's brain
 --> Does not permit longterm or non-invasive NO detection
- <u>Aim</u>: functionalized tissue localizable SWNTs as sensors of inflammation in vivo, using NO as a marker

<u>Strategy</u>: Conjugation of SWNTs with ssDNA molecule for selective binding to NO

ssDNA functionalization of SWNTs for inflammation sensing

- Model molecule: Nitric oxide (NO), produced during inflammation
 - Steady-state concentration of NO in tissues
 - Biologically relevant concentrations ranging over three orders of magnitude (~1nM-500nM)
- SWNTs have demonstrated single-molecule sensitivity (in vitro) and can be functionalized to selectively detect a variety of molecules
 - Certain DNA sequences attached to SWNT have selective NO binding abilities in vitro
- Functionalization: ssDNA oligonucleotide d(AAAT)₇ conjugated with PEG segment (*PEG-DNA*)
 - ssDNA for selective molecular recognition
 - PEGylation for biocompatibility and stability
- Optical signal transduction: NO binding perturbs nanotube electronic structure →
 Fluorescence quenching


PEGylation of DNA-SWNT critical for i.v. stability

In vitro:

- Sensitivity: NO detection limit < 1uM
- Rapid fluorescence quenching

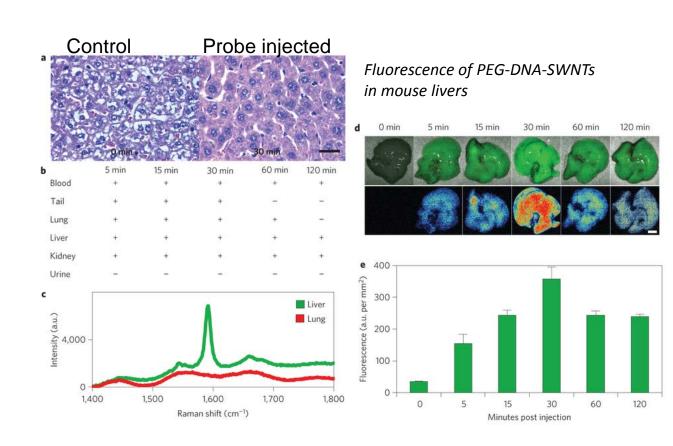
In vivo (tail vein injection):

- Vein occlusion due to aggregates of serum proteins adsorption to DNA-SWNTs
- PEG ligation to DNA-SWNTs critical for in vivo circulation
- PEG moiety prevents adsorption

c 100

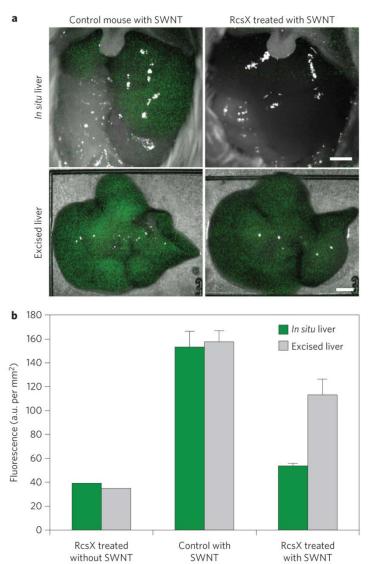
■ (AAAT)₇-SWNT

■ PEG-(AAAT)₇-SWNT

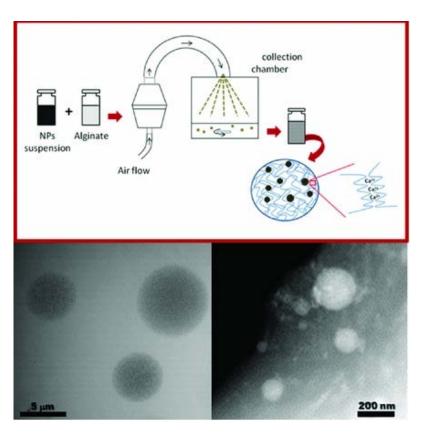

Electrophoretic mobility (m² V⁻¹ s⁻¹)

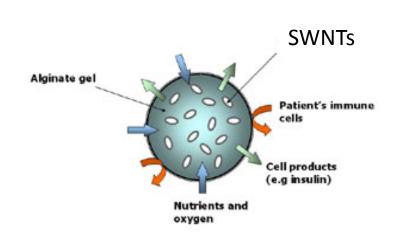
22.5 uM

● 0.5 uM


In vivo: Circulation time & Biodistribution

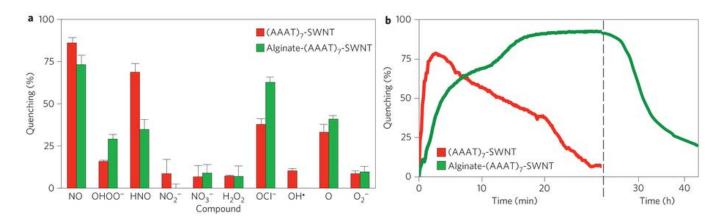
- Biocompatibility:
 Staining shows lack of inflammatory cell recruitment
- SWNTs remain in vivo for at least 2hrs
- Accumulation in liver (peak after 30mins, then constant)
- SWNTs detectable in lung 5 mins after injection & cleared within 2 hrs
 - PEG-DNA-SWNTs can penetrate restrictive capillary networks without causing occlusion
- → biocompatibility of PEG-DNA-SWNTs


Diagnosis of inflammation in mice using PEG-DNA-SWNT sensors


- SJL mouse model: inject tumor cells → intense inflammatory response → massive overproduction of NO over a predictable time course
- Absence of fluorescence in in-situ images due to NO production during inflammation
- Need to make incision in abdominal cavity

Encapsulation of DNA-SWNTs for tissue-specific localization

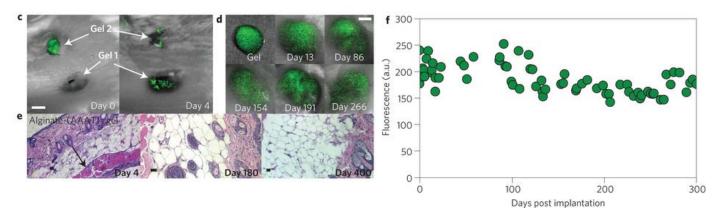
- Alignate is a natural biocompatible and biodegradable polymer
- Encapsulation of DNA-SWNT sensor in alignate-hydrogel



Epidermal tissue inflammation monitoring

In vitro:

- Alignate-DNA-SWNT sensor retains NO specificity
 - Dynamic responses of encapsulated sensor to NO slower



In vivo:

- SubQ implantation of alignate-encapsulated DNA-SWNTs for long-term NO-sensing
- Total signal quenching after 20mins → quenching by burst of NO in wound bed

• In longitudinal implant study, gel remains intact and the signal is largely invariant (14% variability in

intensity)

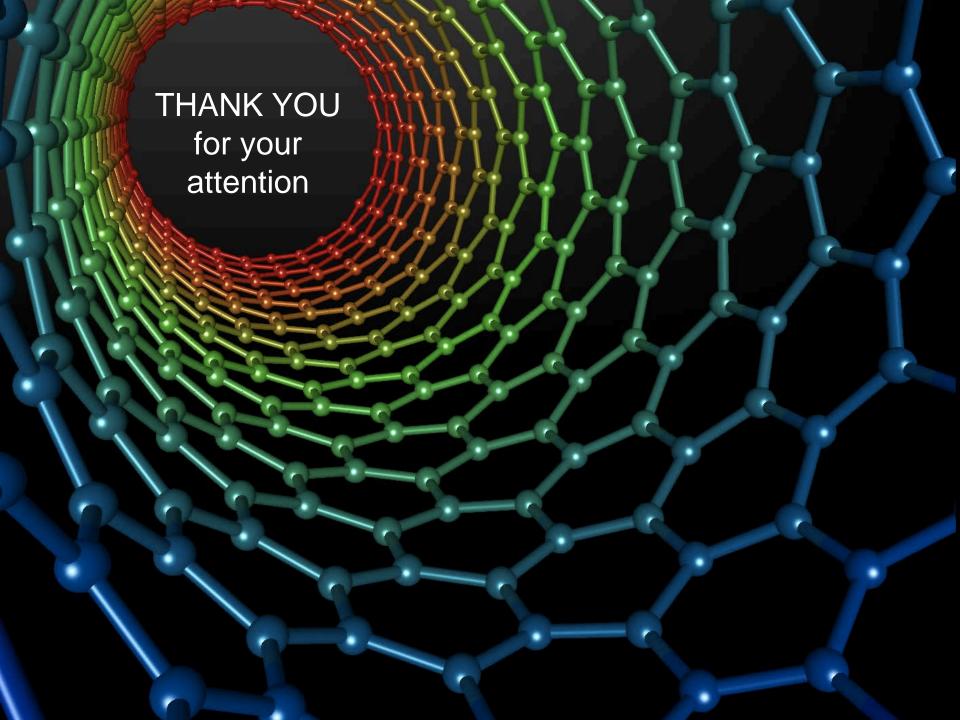
Summary

- PEG-DNA conjugation of SWNTs results in an biocompatible, stable probe for sensitive in vivo sensing of NO
- Injectable SWNT-sensor allows in situ inflammation imaging in mice liver
 - Half-life for liver retention: 4hrs; lung clearing: < 2 hrs
- Implantable SWNT-sensor holds potential as minimally invasive longitudinal inflammation monitor
 - No intrinsic inflammation or adverse responses detectable for >400 days

Limitations & outlook:

- Need to expose liver for in situ imaging → tuning of functionalization to overcome this
- More detailed pharmacokinetic studies (accumulation in liver)

Conclusion: SWNTs as in vivo biosensors


- Unique physical properties of CNTs allow for <u>direct</u> detection in vivo
- Functionalization of CNTs gives rise to a highly variable and selective, biocompatible probes

Issues

- SWNT inherently insoluble and toxic, need to be functionalized and require extensive biocompatibility and toxicity tests
- Pharmacokinetics & biodistribution: safety for use in humans

Outlook:

- Develop new specialized functionalizations of SWNT to detect new targets
- SWNT sensors loaded with, for example, drugs for "on site response" to analyte detection

