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The proteome of a cell is highly dynamic in nature and tightly regulated by both
protein synthesis and degradation to actively maintain homeostasis.

Many intricate biological processes, such as cell growth, differentiation,
diseases, and response to environmental stimuli, require protein synthesis and
translational control.

Long-lasting forms of synaptic plasticity, such as those underlying long-term
memory, require new protein synthesis in a space- and time-dependent manner.

Therefore, direct visualization and quantification of newly synthesized proteins
at a global level are indispensable to unraveling the spatial-temporal

characteristics of the proteomes in live cells.



Labeling methods to probe newly synthesized proteins

Radioisotope or stable isotope labeling to trace and quantify proteome dynamics
(SILAC-MS).

Bioorthogonal non-canonical amino acid tagging (BONCAT) metabolic
incorporation of unnatural amino acids.

Newly synthesized proteins can then be visualized through subsequent
conjugation of the reactive amino acids to fluorescent tags via click chemistry

(FUNCAT).

Stimulated Raman scattering (SRS) microscopy, an emerging vibrational
imaging technique, for the visualization of nascent proteins in live cells upon
metabolic incorporation of deuterium- labeled amino acids
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Non-Canonical Amino acid Tagging
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Current Opinion in Chemical Biology

Tirrell and coworkers established the use of the azide-bearing non-canonical amino acid azidohomoalanine
(AHA) and the alkyne-bearing non- canonical amino acid homopropargylglycine (HPG) as surrogates for
methionine which are cotranslationally introduced in newly synthesized proteins.

Azides and alkynes can be covalently linked via selective Cu(l)-catalyzed [3+2] azide-alkyne cycloaddition

(termed ‘click chemistry’) allowing chemoselective tagging to separate and identify the newly synthesized
proteins in mammalian cells.

Incorporation of the azide-bearing amino acid azidohomoalanine is unbiased, not toxic, and does not
increase protein degradation



. : non-canonical
new protein synthesis, amino acid
labeling a
—1

~F1
BONCAT FUNCAT

+ affinity tag ‘Click Chemistry’ + fluorescent tag
z

protein

new protein
quantification

affinity purification visualization
identification via MS

X X X TAHA
X mathioning
ANISL ci

kDa X Jeyeloheximide
250—
100=—|
50—
25—
16—

anti-biotin

Current Opinion in Chemical Biology



TECHNICAL REPORTS

nature .
neuroscience

In situ visualization and dynamics of newly synthesized
proteins in rat hippocampal neurons FUNCAT
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Exploring the site of translation

BDNF-induced increase of dendritic protein synthesis
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Exploring the site of translation

BDNF-induced increase of dendritic protein synthesis
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Noncanonical Amino Acid Labeling in Vivo to Visualize and
Affinity Purify Newly Synthesized Proteins in Larval Zebrafish
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The larval zebrafish: a genetically tractable, simple vertebrate, which is transparent and therefore ideal for
imaging. It can absorb small chemical compounds directly from their surrounding medium, all of which make
them amendable to chemical screens



At low concentrations, AHA exposure is not toxic and does not

significantly alter simple behaviors
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ng of biotinylated protein / larva

AHA is metabolically incorporated into larval zebrafish proteins in vivo.
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GABA antagonist PTZ induces increased protein synthesis in larval zebrafish.
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How can we visualize a specific endogenous
protein as newly synthesized in situ?
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Proximity ligation assay (PLA)-based strategy

2Ab PLAP!us and Ligation to a Rolling cicle
PLA™Mnus coupled to connector oligo for a amplification and
different oligos circular template label probe binding
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Proximity ligation assay (PLA)-based strategy detects the spatial coincidence of two antibodies:
one that identifies a newly synthesized protein tagged with either FUNCAT or puromycylation and
another that identifies a specific epitope in a protein of interest (POI)



Selectivity and specificity of labeling newly synthesized proteins
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Labeling specific newly synthesized proteins with FUNCAT-PLA and Puro-PLA.
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Labeling specific newly synthesized proteins with FUNCAT-PLA and Puro-PLA.
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Assessing the site of synthesis of Basson with PURO-PLA and Puro-PLA.
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Following protein lifetime, distribution changes and synthesis rate changes with

FUNCAT-PLA
d C
Soma
el uf,;_’r .\( & = 10m|nchase f e

AHA  Chase Dend
Jen rn;—:s PI— 10-min chase
o e 24-h chase

(@n
Q.

120 120
o~ 1 — -l Dendrites
s 100 % 100 4
= 801 = 80d]
E Bassoon -‘2 :
< 60 & 60|
S[g - - sp ol
<
“|= 204 8% 22 ] o o Soma
0 T T T T 0 T 1 1 1 1 1 I
0 12 24 36 48 0 05 1.0 15 20 24 36 48
Chase time (h) Chase time (h)
f .. .
<<
Control GluAi- Ao 2
FUNCAT-PLA = E
5 w 14
O

0 -_r r T
Control TTX TTX+
APV

0t

1° to 2° branch point
Control

34 d ke

Dendrite GluA1-PLA
Soma GluA1-PLA




Supplementary Table 1

Puro-PLA

FUNCAT-PLA

Incorporation

Fast

Slow

No activation required

Uptake by amino acid transporter and activation by MetRS
needed

Competition with all activated tBRNAs

Competition with methionine

Labeling in full conditioned medium

Labeling in methionine-free medium

No starvation necessary

Methionine starvation conditions promote labeling (either with
pre-starvation or at least during incubation)

C-terminal incorporation, possible at any site but
limited to one Puromycin per protein

Only replacement of methionine residues possible, more than
one methionine replacement possible per protein

Protein Full labeling (= one puromycin per protein) would Full labeling in theory possible
lead to protein synthesis block
Truncated, premature termination of labeled Full length protein with small bio-orthogonal groups
protein
Enhanced degradation/ tumover of truncated Physiological fate
proteins expected, non-physiological protein fate
Method Fast, sensitive Lag phase, especially when used without methionine

characteristics

starvation, less sensitive than Puro-PLA

Short labeling, unlikely to influence short term
physiology

Labeling conditions might impact short term physiology, but
also see Supplementary Figure 7

Puro antibodies needed
N-terminal POI antibodies are predicted to work
better than C-terminal

Biotin antibodies needed

Additional step required (biotin click)

Estimating intra- vs intermolecular detection with
N-/C-term antibody against POI possible

Modification by direct click of a PLA oligo possible




Vibrational imaging of newly synthesized proteins in
live cells by stimulated Raman scattering microscopy
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Raman microscopy
It enables chemical imaging. It is based on the Raman scattering effect of molecules that
was discovered by C.V. Raman in the early 1930s.

When monochromatic light is shined on a molecule, it can be inelastically scattered and
gives off light at lower energy. All molecules have specific Raman signatures typically
spanning from 100 cm-* to 3500 cm,
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Because different chemical functional groups scatter light at different frequencies, Raman
spectroscopy can be used as a tool for chemical structure analysis, chemical
fingerprinting and chemical imaging.

The Raman spectrum is highly dependent on the chemical structure, but almost
unaffected by the local environment, of the molecule. Therefore, it is not only specific, but
also quantitative.

Spontaneous Raman microscopy provides specific vibrational signatures of chemical
bonds, but is often hindered by low sensitivity.



Stimulated Raman scattering (SRS)

The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which
Is achieved by implementing high-frequency (megahertz) phase-sensitive detection.
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Stimulated Raman scattering (SRS) microscopy set up
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For the visualization of nascent proteins in live cells, it is coupled through metabolic incorporation of deuterium- labeled

amino acids. Newly synthesized proteins are imaged via their unique vibrational signature of carbon—deuterium bonds
(C-D).



SRS microscopy advantages

in comparison with fluorescence microscopy it is label-free, i.e. it does not
require fluorophores, allowing the study of unaltered cells and tissues;

it typically works out of resonance, i.e. without population transfer into
electronic excited molecular states, thus minimizing photobleaching and
damage to biological samples;

since CRS exploits a coherent superposition of the vibrational responses from
the excited oscillators, it is considerably more sensitive than spontaneous
Raman microscopy, allowing extremely higher imaging speeds, up to the video
rate;

being a nonlinear microscopy techniques, with the signal generation confined
to the focal volume, it exhibits a three-dimensional sectioning capability similar
to that of multiphoton fluorescence microscopy;

the use of near-infrared excitation (700-1200 nm) has the advantage of a high
penetration depth, which allows imaging through thick tissues, and a low
phototoxicity, minimizing multi-photon absorption induced damage.



SRS Imaging of Newly Synthesized Proteins by Metabolic Incorporation of

Leucine-d10 in Live HeLa Cells
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Time-Dependent de Novo Protein Synthesis and Protein Synthesis Inhibition.
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SRS imaging of newly synthesized proteins in both cell bodies and newly grown neurites of

differentiable mouse neuroblastoma (N2A) cells




Femical

Imaging Complex Protein Metabolism in Live Organisms by
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Sensitivity Optimization and Time-Lapse Imaging of

de Novo Proteome Synthesis Dynamics
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Time-dependent SRS imaging of protein degradation in live HeLa cells
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Two-Color Pulse—-Chase SRS Imaging of Two Sets of Temporally Defined Proteins
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SRS Imaging of Newly Synthesized Proteins in Live Mouse Brain Tissues
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SRS Imaging of Newly Synthesized Proteins in Vivo
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SRS Imaging of Newly Synthesized Proteins in Vivo

D-AA in water or
IP injection

-
o 3 N\
S o
574 )
», o

Off-resonance  '—



SRS microscopy
v Biocompatible
v’ Live imaging (video rate, 3s/frame)

v" Low backgroung, high sensitivity

> Relatively long incubation time compared to FUNCAT-PLA

» Non selective for a specific target protein



Tag your newly generated ideas and
track the good ones

Thank you for your attention!
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