New generation of sensors to map pH dynamics and Chloride transport in organelles

TJC

11.08.2015

Rochat Mary-aude

Subcellular pH

- >Cellular Compartimentalization: Segregation of specific function in organelles
- >Tendancy of cytosol acification
- >Multiple pH regulation mechanisms

>Polarization and cell migration

pH of the endocytic pathway

>Function:

- *Ligand-receptor uncoupling
- *Activation protease
- *Protonation of microbicidal factors
- >V-ATPase
- >CIC exchangers:

Electrogenic
Voltage dissipation
Implicated in disease

Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell

Souvik Modi¹, Clément Nizak², Sunaina Surana¹, Saheli Halder¹ and Yamuna Krishnan¹*

Aim: Simultaneous use of different DNA nanodevices to map the pH changes within the same living cells

Principle: Nanodevice programmed to enter via different pathway Early endosome and trans-golgi network

SympHony: Simultaneous pH mapping technology

SimpHony

Simultaneous pH mapping technology

>FRET-based DNA nanodevice

*Subcellular targeting: -Furin retrograde endocytic pathway

-Transferrin endocytic/recycling pathway

*FRET-pairs: Alexa 546/647 Alexa 488/647

Characterization of scFv

>Phage display screen of scFv recombinant antibodies against dsDNA of Furin nanodevice

- *Sequence specific binding capacity
- *Kd: 80nM
- >Expression of scFv-furin
- >Artificial receptor for nanodevice
- *pH dependant FRET
- *Relevant pH sensitivity for the targeted organelle

LE: late endosome

SE: sorting endosome

RE: recycling endosome

Trafficking specificities

Furin-nanodevice

+ A568-transferrin: EE/SE co-localization

+Fitc-Dextran: Chased 60min Late endosome

+TGN46 + Cycloheximid Chased 90min TGN network

>>Speficities of Furin nanodevice to the furin retrograde pathway

Trafficking specificities

Transferrin-nanodevice

>A568-transferrin + Tf-Itf

10min Pulse: Sorting endosomes

10min Pulse/12min Chase: Perinuclear Recycling endosomes

DNA nanodevice are trafficking down of their specific endocytic pathways
Without perturbation of the ligand

Spatiotemporal pH mapping

• Furin nanodevice

10min pulse >EE/SE: pH of 6

30min pulse/45min chased >LE: pH of 5.5

2h pulse/90min chased Cycloheximid >TGN: broader range of pH From 5.5-6.5

Spatiotemporal pH mapping

Transferrin nanodevice

10min pulse

>SE: pH of 6

10 min pulse/12min chase

>RE: pH of 6.5

Each DNA nanomachine:

- *Specific endocytic pathway
- *Quantitative pH sensing
- *High resolution spatiotemporal maps of subcellular organelles

Sequential pH mapping

12 min, Comp media

Simultaneous pH mapping

Co-localization in the early endosomes

Similar D/A ratio distribution in simultaneous Vs nanodevice alone

Generation of non-interfering and autonomous DNA-based pH-sensitive nanodevice

Organelles morphology

Dynasore: *LE: furin (red)

*EE: transferrin (green)

>Restoration of endosomal dynamics and pH after wash-out

Hypoacidification of the lumen in the tubular EE due to dynasore

Organelles morphology

Brefeldin A:

- >Alteration distribution nanodevice
- >Tubular extension of the TGN
- >Higher pH in the Brefeldin A treated TGN
- >pH in EE is unaffected

Morphology alteration due to Brefeldin A is associated with defective acidification of the TGN

NBD: golgi

Conclusions

- Specific targeting of subcellular compartment using trafficking proteins
- Modular DNA nanodevice containing analyte sensing domains and fluorophores
- Simultaneous pH measurement in different compartement in living cells
- Pos
- >Labeling in living cell
- >Greater resolution than small molecule sensors
- >iMotif stability is tunable (pH range)
- >Generalizable to other chemical molecule
- >Application for pH determination and compartments dynamics
- Neg
- >Unprecise characterization of the subcellular compartments for Furin
- >Different sensitivity/precision between nanodevice
- >Fluorescence overlapp
- >Trafficking pathway and pH estimates needed
- >Loss of signal

Chloride ion

- Broad range (5-130mM)
- Tighly regulated :
- >Chloride channels
- >CI-/H+ exchanger
- Functions:
- >pH regulation (chloride and bicarbonate exchanger)
- >Cell excitability/secretion (cell mb)
- >Mb voltage dissipation (endo-lysosome)
- >Volume homeostasis (CIC2)
- >Phagosome (HOCI)
- Disease:
- >Cystic fibrosis: lung, pancreas, intestine..(CFTR)
- >Epilepsy/congenital myotonia (CIC1)
- >Bartter's syndrome: kidney (CICkb)
- >Dent's disease: kidney

CI ion transporter sensing

CI-sensitive small-molecule dye:

- *SPQ
- *MQAE
- *Lucigenin
- + Bicarbonate and pH insensitive
- Not ratiometric
- Excitation in the UV range
- Cannot be specifically localized within organelles
- Unstable loading and retention over 30°C
- Chemical conjugation: *loss sensitivity (massive quenching)
 *variable sensor characteristics
- >Not suitable for live cell imaging

*BAC:

- + Bioconjugatable
- + Can be targeted to specific intracellular location
- + Wide range of Chloride concentration (0-200mM)

Lucigenin

Cl ion transporter sensing

>Cl sensitive proteins reporters: YFP mutant/FRET

- *Clomeleon
- *CI-sensor
- + Targetable
- + Photostable
- + Live imaging
- + Ratiometric
- pH sensitive and dependancy
- Low chloride affinity

*ClopHensor:

- + pH reporter module/correction factor
- Reduction of time resolution
- Complicated analysis

Need for

- >Modular device
- >Entire physiological range
- >Uniform Sensor characteristics
- >Ratiometric: ratio of 2 optical signals
- >pH independant
- >Live imaging
- >Targeted to specific pathway

A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells

Sonali Saha¹, Ved Prakash², Saheli Halder¹, Kasturi Chakraborty² and Yamuna Krishnan^{1,2}*

Aim: precisely measure the activity and the subcellular location of chloride transporter in living cells using a nanodevice

Principle: specific targeting to the endolysosomal pathway

Clensor

- Fluorescent (BAC/A647) and ratiometric DNA-based nanodevice
- Coupled to endolysosomal/transferrin pathway
- pH independant

CI- measured in lysosome

- Drosophila hemocytes:
- >Endocytosis through ALBR
- >Endolysosomal pathway migration
- >Specific targeting Transferrin-pathway

Intracellular functionality of Clensor

- Quantitative, linear, [CI-] dependant R/G ratio
- 2.5fold between 5-120mM
- Endocytosis does not affect sensing properties of Clensor

Spatiotemporal change of [CI-]

- Progressive accumulation of Cl- along the endolysosomal pathway
- Reliable quantification
- CI- alteration detection after chemical perturbation of chloride conductance

Localization and activity CIC

Specific Knock-down of DmClC-b and DmClC-c

• DmClC-c: EE

RE: moderately

>Inter-relation [CI-] and pH

DmClC-b: LE

ΙΥ

>No role on pH, similar to ClC6,7

Table 1 Lumenal [Cl ⁻] within recycling endosomes.		
	Mean [Cl ⁻] _{RE} ± s.e.m. (mM)	Mean pH _{RE} ± s.e.m.
S2R+ DmCIC-c	39.9 ± 1.2	6.3 ± 0.09
RNAi DmCIC-b	33.1 ± 1.5	6.4 ± 0.03
RNAi	39.1 ± 0.7	6.3 ± 0.09

Conclusions

- Generation of modular nanodevice with identical sensor characteristics
- >Sensing module: P-BAC
- >Normalizing module: D2
- >**Targeting module**: D1 (+/- aptamer)
- Quantitative and functional studies possible
- >Physiology and Disease: *Lysosomal disorder

*Cystic fibrosis (CFTR)

*Golgi pH regulator (GPHR)

>Role of Chloride homeostasis: *Secretory pathway

*Synaptic vesicles

<u>Pos</u>

- >Labeling in living cell
- >Functional assay

<u>Neg</u>

>Sensitivity?

Back-up1

Steady state fluorescent spectra of DNA nanomachines at clamped pH

Back-up2

Clensor and Clensor[™] sequences

Name	Sequence	Comment
Р	BAC-NH _E -Lys-ATC AAC ACT GCA-Lys-COOH	PNA strand: Sensing module
D2	5' TATA TATA GGATCTTGCTGTCTGGTG TGC AGT GTT GAT 3'	DNA strand: Normalizing module; internal Alexa 647 modification on the T shown in bold
D1	5' CACCAGACAGCAAGATCC TATATATA 3'	DNA strand: Targeting module
D1Tf _{apt}	5' CACCAGACAGCAAGATCCTATATATAGGGGGAUCAAUCCAAGGGA CCCGGAAACGCUCCCUUACACCCC 3'	DNA RNA hybrid strand : Targeting module with RNA aptamer against human transferrin receptor.

Back-up2

Gel mobility shift assay

