Immunological Genome Project: Does the big immunological/hematological database support good little science? Yasuyuki Saito, M.D., Ph.D. Exp. Hematology, USZ #### **Overview** - 1. Immunological Genome Project - 2. Workflow and data analysis - 3. Recent findings using ImmGen database - 4. ImmGen data browsers #### Introduction - Classical immunology studies are mainly focused on a particular protein or biological process of a particular type of the cells/organs. - With technological advances many type of the immune/hematopoietic cells as well as their progenitors have been identified. - It is feasible for individual laboratories to understand which signals / molecules are regulated in a particular cell lineage, whereas it's difficult to understand how molecular networks operate immune system for individual laboratories. - ImmGen is a consortium aiming to generate gene expression profiles for primary immune / hematopoietic cells from different anatomical locations that were analyzed directly ex vivo at finely defined stages of differentiation. ### The pros and cons of consortium biology #### The pros - 1. The only way of getting to the result for some large questions - 2. Promotes a culture of openness, through data and material sharing - 3. Promotes uniform standards, data and data formats that are compatible between labs, as well as the use of common nomenclature and shared reagents. - 4. Results can diffuse broadly, extend, enrich the "little science" that follows - 5. High-thoughputout approaches can be more "economical" than repetitive conventional approaches #### The cons - 1. Need to compete for limited funding - 2. suppress scientific creativity by promoting "science by committee" - 3. establishes self-perpetuating structures that tend to create projects to ensure their own survival, rather than for clear scientific need. - 4. Results can diffuse broadly, extend, enrich the "little science" that follows - 5. It is wasteful; "Spending money instead of thought" Modified from Benoist et al., Nature Rev. Immunol, 2012 vol. 12 734 ### Immunological Genome Project (ImmGen Project) The Immunological Genome Project: networks of gene expression in immune cells Tracy S P Heng, Michio W Painter & The Immunological Genome Project Consortium Heng TSP et al., Nature Immunol, 2008 vol.9 1091-1094 - Initiated in 2007, released April 2012 - Aim: to establish a comprehensive, public compendium of gene networks - a collaborative group of 15 immunology and 5 computational biology laboratories ### **Project workflow** - All the mice used were genetically identical and sourced from single location (C57BL/6J from Jackson lab.) - •At least 3 mice were pooled, and tissue was harvested at a fixed time (between 8:30 and 9:30) to avoid circadian variation. - •The cells were double-sorted and 1-5x10⁴ cells were collected. - Homogeneity, RNA preparation, probe labeling and hybridization are done in a central processing site. # mouse hematopoietic/immune cell lineage tree profiled by ImmGen consortium (244 cell types) ## **Data Processing** - Micoarray-based technique is applied to the initial analysis (phase I) - •The Affymetrix Mouse Gene ST1.0 Array (covered 26,166 transcripts in total) was used - •The Dynamic range was normalized, and if the DR was <40, sample was systemically dropped. ## **Data analysis** ## Gene expression profile across hematopoietic subsets ### findings #### nature immunology ## Deciphering the transcriptional network of the dendritic cell lineage Jennifer C Miller^{1,2}, Brian D Brown^{1,3}, Tal Shay⁴, Emmanuel L Gautier^{1,5,6}, Vladimir Jojic^{7,10}, Ariella Cohain³, Gaurav Pandey³, Marylene Leboeuf^{1,2}, Kutlu G Elpek⁸, Julie Helft^{1,2}, Daigo Hashimoto^{1,2}, Andrew Chow^{1,2,9}, Jeremy Price^{1,2}, Melanie Greter^{1,2,7}, Milena Bogunovic^{1,2}, Angelique Bellemare-Pelletier⁸, Paul S Frenette⁹, Gwendalyn J Randolph^{1,5,6}, Shannon J Turley⁸, Miriam Merad^{1,2} & the Immunological Genome Consortium¹¹ Show gene signature of DC lienage cells and difference with macrophages at progenitor cell level #### nature immunology # Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages Emmanuel L Gautier¹⁻³, Tal Shay⁴, Jennifer Miller^{2,5}, Melanie Greter^{2,5}, Claudia Jakubzick^{1,2}, Stoyan Ivanov³, Julie Helft^{2,5}, Andrew Chow^{2,5}, Kutlu G Elpek^{6,7}, Simon Gordonov⁸, Amin R Mazloom⁸, Avi Ma'ayan⁸, Wei-Jen Chua³, Ted H Hansen³, Shannon J Turley^{6,7}, Miriam Merad^{2,5}, Gwendalyn J Randolph¹⁻³ & the Immunological Genome Consortium⁹ Gautier, E. et al. (2012). *Nature Immunology*, 13(11), 1118–1128. Identify Macrophage specific TF (TCEF3, CEBPa, Bach1 and CREG-1) together with specific marker (MerTK, CD64) #### nature immunology ## Intrathymic programming of effector fates in three molecularly distinct $\gamma\delta$ T cell subtypes Kavitha Narayan^{1,5}, Katelyn E Sylvia^{1,5}, Nidhi Malhotra¹, Catherine C Yin¹, Gregory Martens², Therese Vallerskog², Hardy Kornfeld², Na Xiong³, Nadia R Cohen⁴, Michael B Brenner⁴, Leslie J Berg¹, Joonsoo Kang¹ & The Immunological Genome Project Consortium⁶ Narayan, K., et al. (2012). *Nature Immunology*, 13(5), 511–518. Identify three genetically distinct $\gamma\delta T$ cell subtypes (naive, IL-17+ effector, IFNg+ effector) in thymus #### nature immunology ## Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells Nadia R Cohen^{1,5}, Patrick J Brennan^{1,5}, Tal Shay², Gerald F Watts¹, Manfred Brigl^{1,3}, Joonsoo Kang⁴, Michael B Brenner¹ & The Immunological Genome Project Consortium⁶ Cohen, N. R., et al. (2013). Nature Immunology, 14(1), 90-99. #### nature immunology ## Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks Deepali Malhotra^{1,2,8}, Anne L Fletcher^{1,8}, Jillian Astarita^{1,2}, Veronika Lukacs-Kornek¹, Prakriti Tayalia³, Santiago F Gonzalez⁴, Kutlu G Elpek¹, Sook Kyung Chang⁵, Konstantin Knoblich¹, Martin E Hemler¹, Michael B Brenner^{5,6}, Michael C Carroll⁴, David J Mooney³, Shannon J Turley^{1,7} & the Immunological Genome Project Consortium⁹ Malhotra, D., et al. (2012). *Nature Immunology*, 13(5), 499–510. Invariant NKT cells shared genetical feature of NK, $\alpha\beta T$ cells Lymph node stromal cells, especially FRCs express genes relevant to cytokine signaling. ### **Data analysis** #### 1. Lineage focused studies Lineage focused studies have described the relation between lineages and assigned cell types of to the lineage tree. #### 2. Systems immunology study System studies that have defined modules of coexpressed genes across the entire dataset and reconstructed the regulatory program of the modules using Ontogenet ### Ontogenet: reconstructing lineage-sensitive regulation #### nature immunology # Identification of transcriptional regulators in the mouse immune system Vladimir Jojic^{1,7}, Tal Shay^{2,7}, Katelyn Sylvia³, Or Zuk², Xin Sun⁴, Joonsoo Kang³, Aviv Regev^{2,5,8}, Daphne Koller^{1,8} & the Immunological Genome Project Consortium⁶ Jojic, V., et al. (2013). Nature Immunology, 14(6), 633-643. Ontogenet: a new ALGORITHM to delineate the regulatory circuits that drive hematopoietic cell differentiation **Criterion 1:** the expression of each module of genes is determined by a combination of activating and repressing transcription factors **Criterion 2:** the activity of those transcription factors may change in different cell types **Criterion 3:** the identity and activity of the transcription factors that regulate one module are more similar in cells that are close to each other in the lineage tree **Criterion4:** master regulators of a lineage are active across the sublineages, nut the subtypes can also have additional, more specific regulators (GATA-3 for whole T cells vs Foxp3 for Treg cells) # mouse hematopoietic/immune cell lineage tree profiled by ImmGen consortium (244 cell types) #### Coarse- and fine- grained module Coarse grained module: total 81 Fine grained module: total 334 #### Module C33: early B molecule, relevant to B cell development Regulator of C33 module calculated by ontoget algorithm ### Integrating ImmGen with other datasets ### Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis Noa Novershtern, ^{1,2,3,11} Aravind Subramanian, ^{1,11} Lee N. Lawton, ⁴ Raymond H. Mak, ¹ W. Nicholas Haining, ⁵ Marie E. McConkey, ⁶ Naomi Habib, ³ Nir Yosef, ¹ Cindy Y. Chang, ^{1,6} Tal Shay, ¹ Garrett M. Frampton, ^{2,4} Adam C.B. Drake, ^{2,7} Ilya Leskov, ^{2,7} Bjorn Nilsson, ^{1,6} Fred Preffer, ⁸ David Dombkowski, ⁸ John W. Evans, ⁵ Ted Liefeld, ¹ John S. Smutko, ⁹ Jianzhu Chen, ^{2,7} Nir Friedman, ³ Richard A. Young, ^{2,4} Todd R. Golub, ^{1,5,10} Aviv Regev, ^{1,2,10,12,*} and Benjamin L. Ebert ^{1,5,6,12,*} - -38 type of distinct cell populations from 4 to 7 donors (CB or PB) - -Affymetrix HG_U133AAofAv2 microarrays (22,944 probes) # Signature genes characterizing the lineages # Lineage-specific regulation of TF expression # Conservation and divergence in the transcriptional programs of the human and mouse immune systems Tal Shay^{a,1}, Vladimir Jojic^{b,1}, Or Zuk^a, Katherine Rothamel^c, David Puyraimond-Zemmour^c, Ting Feng^c, Ei Wakamatsu^c, Christophe Benoist^{c,2}, Daphne Koller^b, Aviv Regev^{a,d}, and the ImmGen Consortium³ Using the Ensembl COMPARA database, 10,248 one-to-one orthologs between the two species are measured. # human hematopoietic/immune cell lineage tree profiled by DMAP consortium (38 cell types) # mouse hematopoietic/immune cell lineage tree profiled by ImmGen consortium (244 cell types) # The grobal expression profiles of matching lineages between human and mouse -The global expression profiles of matching lineages are similar between the two species for both individual cell types and average group profiles Thursday, February 6, 14 -Mean-centered expression values of the genes shared between matching lineage signatures are also similar between two species. # Differentially expressed genes between human and mouse (previously reported) # Differentially expressed genes between human and mouse (unreported so far) # Conserved and Divergent lineage-specific expression of regulators #### **Divergent** ## ImmGen data browser http://www.immgen.org ## ImmGen App ### Summary - 1. Immunological Genome Project, is a part of consortium biology in immunology aiming to achieve comprehensive gene network in mouse immune/hematopoietic system - 2. The powerful dataset have provided many evidences regarding i) gene expression profiles across hematopoietic subsets, ii) developmental intermediates, and iii) subsetspecific perturbations - 3. Ontogenet program developed from the ImmGen dataset will predict a set of transcriptional regulators which are unknown so far - 4. The power of immGen dataset is not only in the analysis of the data within it, but in the integration with external systemic datasets, which can amplify informational outputs. - 5. ImmGen software and App can be easy to analyze such a big database and will apply to our good little science.