

Immunological Genome Project:

Does the big immunological/hematological database support good little science?

Yasuyuki Saito, M.D., Ph.D.

Exp. Hematology, USZ

Overview

- 1. Immunological Genome Project
- 2. Workflow and data analysis
- 3. Recent findings using ImmGen database
- 4. ImmGen data browsers

Introduction

- Classical immunology studies are mainly focused on a particular protein or biological process of a particular type of the cells/organs.
- With technological advances many type of the immune/hematopoietic cells as well as their progenitors have been identified.
- It is feasible for individual laboratories to understand which signals / molecules are regulated in a particular cell lineage, whereas it's difficult to understand how molecular networks operate immune system for individual laboratories.
- ImmGen is a consortium aiming to generate gene expression profiles for primary immune / hematopoietic cells from different anatomical locations that were analyzed directly ex vivo at finely defined stages of differentiation.

The pros and cons of consortium biology

The pros

- 1. The only way of getting to the result for some large questions
- 2. Promotes a culture of openness, through data and material sharing
- 3. Promotes uniform standards, data and data formats that are compatible between labs, as well as the use of common nomenclature and shared reagents.
- 4. Results can diffuse broadly, extend, enrich the "little science" that follows
- 5. High-thoughputout approaches can be more "economical" than repetitive conventional approaches

The cons

- 1. Need to compete for limited funding
- 2. suppress scientific creativity by promoting "science by committee"
- 3. establishes self-perpetuating structures that tend to create projects to ensure their own survival, rather than for clear scientific need.
- 4. Results can diffuse broadly, extend, enrich the "little science" that follows
- 5. It is wasteful; "Spending money instead of thought"

 Modified from Benoist et al., Nature Rev. Immunol, 2012 vol. 12 734

Immunological Genome Project (ImmGen Project)

The Immunological Genome Project: networks of gene expression in immune cells

Tracy S P Heng, Michio W Painter & The Immunological Genome Project Consortium

Heng TSP et al., Nature Immunol, 2008 vol.9 1091-1094

- Initiated in 2007, released April 2012
- Aim: to establish a comprehensive, public compendium of gene networks
- a collaborative group of 15 immunology and 5 computational biology laboratories

Project workflow

- All the mice used were genetically identical and sourced from single location (C57BL/6J from Jackson lab.)
- •At least 3 mice were pooled, and tissue was harvested at a fixed time (between 8:30 and 9:30) to avoid circadian variation.
- •The cells were double-sorted and 1-5x10⁴ cells were collected.
- Homogeneity, RNA preparation, probe labeling and hybridization are done in a central processing site.

mouse hematopoietic/immune cell lineage tree profiled by ImmGen consortium (244 cell types)

Data Processing

- Micoarray-based technique is applied to the initial analysis (phase I)
- •The Affymetrix Mouse Gene ST1.0 Array (covered 26,166 transcripts in total) was used
- •The Dynamic range was normalized, and if the DR was <40, sample was systemically dropped.

Data analysis

Gene expression profile across hematopoietic subsets

findings

nature immunology

Deciphering the transcriptional network of the dendritic cell lineage

Jennifer C Miller^{1,2}, Brian D Brown^{1,3}, Tal Shay⁴, Emmanuel L Gautier^{1,5,6}, Vladimir Jojic^{7,10}, Ariella Cohain³, Gaurav Pandey³, Marylene Leboeuf^{1,2}, Kutlu G Elpek⁸, Julie Helft^{1,2}, Daigo Hashimoto^{1,2}, Andrew Chow^{1,2,9}, Jeremy Price^{1,2}, Melanie Greter^{1,2,7}, Milena Bogunovic^{1,2}, Angelique Bellemare-Pelletier⁸, Paul S Frenette⁹, Gwendalyn J Randolph^{1,5,6}, Shannon J Turley⁸, Miriam Merad^{1,2} & the Immunological Genome Consortium¹¹

Show gene signature of DC lienage cells and difference with macrophages at progenitor cell level

nature immunology

Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages

Emmanuel L Gautier¹⁻³, Tal Shay⁴, Jennifer Miller^{2,5}, Melanie Greter^{2,5}, Claudia Jakubzick^{1,2}, Stoyan Ivanov³, Julie Helft^{2,5}, Andrew Chow^{2,5}, Kutlu G Elpek^{6,7}, Simon Gordonov⁸, Amin R Mazloom⁸, Avi Ma'ayan⁸, Wei-Jen Chua³, Ted H Hansen³, Shannon J Turley^{6,7}, Miriam Merad^{2,5}, Gwendalyn J Randolph¹⁻³ & the Immunological Genome Consortium⁹

Gautier, E. et al. (2012). *Nature Immunology*, 13(11), 1118–1128.

Identify Macrophage specific TF (TCEF3, CEBPa, Bach1 and CREG-1) together with specific marker (MerTK, CD64)

nature immunology

Intrathymic programming of effector fates in three molecularly distinct $\gamma\delta$ T cell subtypes

Kavitha Narayan^{1,5}, Katelyn E Sylvia^{1,5}, Nidhi Malhotra¹, Catherine C Yin¹, Gregory Martens², Therese Vallerskog², Hardy Kornfeld², Na Xiong³, Nadia R Cohen⁴, Michael B Brenner⁴, Leslie J Berg¹, Joonsoo Kang¹ & The Immunological Genome Project Consortium⁶

Narayan, K., et al. (2012). *Nature Immunology*, 13(5), 511–518.

Identify three genetically distinct $\gamma\delta T$ cell subtypes (naive, IL-17+ effector, IFNg+ effector) in thymus

nature immunology

Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells

Nadia R Cohen^{1,5}, Patrick J Brennan^{1,5}, Tal Shay², Gerald F Watts¹, Manfred Brigl^{1,3}, Joonsoo Kang⁴, Michael B Brenner¹ & The Immunological Genome Project Consortium⁶

Cohen, N. R., et al. (2013). Nature Immunology, 14(1), 90-99.

nature immunology

Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks

Deepali Malhotra^{1,2,8}, Anne L Fletcher^{1,8}, Jillian Astarita^{1,2}, Veronika Lukacs-Kornek¹, Prakriti Tayalia³, Santiago F Gonzalez⁴, Kutlu G Elpek¹, Sook Kyung Chang⁵, Konstantin Knoblich¹, Martin E Hemler¹, Michael B Brenner^{5,6}, Michael C Carroll⁴, David J Mooney³, Shannon J Turley^{1,7} & the Immunological Genome Project Consortium⁹

Malhotra, D., et al. (2012). *Nature Immunology*, 13(5), 499–510.

Invariant NKT cells shared genetical feature of NK, $\alpha\beta T$ cells

Lymph node stromal cells, especially FRCs express genes relevant to cytokine signaling.

Data analysis

1. Lineage focused studies

Lineage focused studies have described the relation between lineages and assigned cell types of to the lineage tree.

2. Systems immunology study

System studies that have defined modules of coexpressed genes across the entire dataset and reconstructed the regulatory program of the modules using Ontogenet

Ontogenet: reconstructing lineage-sensitive regulation

nature immunology

Identification of transcriptional regulators in the mouse immune system

Vladimir Jojic^{1,7}, Tal Shay^{2,7}, Katelyn Sylvia³, Or Zuk², Xin Sun⁴, Joonsoo Kang³, Aviv Regev^{2,5,8}, Daphne Koller^{1,8} & the Immunological Genome Project Consortium⁶

Jojic, V., et al. (2013). Nature Immunology, 14(6), 633-643.

Ontogenet: a new ALGORITHM to delineate the regulatory circuits that drive hematopoietic cell differentiation

Criterion 1: the expression of each module of genes is determined by a combination of activating and repressing transcription factors

Criterion 2: the activity of those transcription factors may change in different cell types

Criterion 3: the identity and activity of the transcription factors that regulate one module are more similar in cells that are close to each other in the lineage tree

Criterion4: master regulators of a lineage are active across the sublineages, nut the subtypes can also have additional, more specific regulators (GATA-3 for whole T cells vs Foxp3 for Treg cells)

mouse hematopoietic/immune cell lineage tree profiled by ImmGen consortium (244 cell types)

Coarse- and fine- grained module

Coarse grained module: total 81 Fine grained module: total 334

Module C33: early B molecule, relevant to B cell development

Regulator of C33 module calculated by ontoget algorithm

Integrating ImmGen with other datasets

Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis

Noa Novershtern, ^{1,2,3,11} Aravind Subramanian, ^{1,11} Lee N. Lawton, ⁴ Raymond H. Mak, ¹ W. Nicholas Haining, ⁵ Marie E. McConkey, ⁶ Naomi Habib, ³ Nir Yosef, ¹ Cindy Y. Chang, ^{1,6} Tal Shay, ¹ Garrett M. Frampton, ^{2,4} Adam C.B. Drake, ^{2,7} Ilya Leskov, ^{2,7} Bjorn Nilsson, ^{1,6} Fred Preffer, ⁸ David Dombkowski, ⁸ John W. Evans, ⁵ Ted Liefeld, ¹ John S. Smutko, ⁹ Jianzhu Chen, ^{2,7} Nir Friedman, ³ Richard A. Young, ^{2,4} Todd R. Golub, ^{1,5,10} Aviv Regev, ^{1,2,10,12,*} and Benjamin L. Ebert ^{1,5,6,12,*}

- -38 type of distinct cell populations from 4 to 7 donors (CB or PB)
- -Affymetrix HG_U133AAofAv2 microarrays (22,944 probes)

Signature genes characterizing the lineages

Lineage-specific regulation of TF expression

Conservation and divergence in the transcriptional programs of the human and mouse immune systems

Tal Shay^{a,1}, Vladimir Jojic^{b,1}, Or Zuk^a, Katherine Rothamel^c, David Puyraimond-Zemmour^c, Ting Feng^c, Ei Wakamatsu^c, Christophe Benoist^{c,2}, Daphne Koller^b, Aviv Regev^{a,d}, and the ImmGen Consortium³

Using the Ensembl COMPARA database, 10,248 one-to-one orthologs between the two species are measured.

human hematopoietic/immune cell lineage tree profiled by DMAP consortium (38 cell types)

mouse hematopoietic/immune cell lineage tree profiled by ImmGen consortium (244 cell types)

The grobal expression profiles of matching lineages between human and mouse

-The global expression profiles of matching lineages are similar between the two species for both individual cell types and average group profiles

Thursday, February 6, 14

-Mean-centered expression values of the genes shared between matching lineage signatures are also similar between two species.

Differentially expressed genes between human and mouse (previously reported)

Differentially expressed genes between human and mouse (unreported so far)

Conserved and Divergent lineage-specific expression of regulators

Divergent

ImmGen data browser

http://www.immgen.org

ImmGen App

Summary

- 1. Immunological Genome Project, is a part of consortium biology in immunology aiming to achieve comprehensive gene network in mouse immune/hematopoietic system
- 2. The powerful dataset have provided many evidences regarding i) gene expression profiles across hematopoietic subsets, ii) developmental intermediates, and iii) subsetspecific perturbations
- 3. Ontogenet program developed from the ImmGen dataset will predict a set of transcriptional regulators which are unknown so far
- 4. The power of immGen dataset is not only in the analysis of the data within it, but in the integration with external systemic datasets, which can amplify informational outputs.
- 5. ImmGen software and App can be easy to analyze such a big database and will apply to our good little science.

