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Generation of patient derived/specific cells for transplantation/regenerative medicine
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Making neurons in live animals- In vivo transdifferentiation

Generation of induced neurons via direct conversion
in vivo
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Cellular reprogramming is a new and rapidly emerging field in which  organs such as the pancreas and heart (17, 18), the method is yet
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Non-Confidential Description - PSU No. 3961
"Direct Conversion of Reactive Astrocytes into Functional Neurons to
Treat Brain Injury and Neurological Disorders”

Keywords/Field of Invention:

Brain mjury, spinal cord mmjury, stroke, neurological
disorders, Alzhemmer’s disease. Parkinson disease,
amyotrophic lateral sclerosis (ALS), neurons, astrocytes,
ghal cells, trans-differentiation. reprogramming

Inventors:
Gong Chen, Ziyuan Guo
Background

Alzhemmer’s disease 15 well-known for amyloid plaques and tau tangles. but reactive astrocytes are another
hallmark of Alzhemmer’s diseaze brain. Reactive astrocytes are activated by newal mjury and neurclogical
disorders to mutially serve as a defense system to protect the swrounding healthy bramn tissue. After injury or
disease, reachve astrocytes often over proliferate and eventually form ghal scar tissue to prevent bram functional
recovery. Although reactive astrocytes have been found widely associated with neural mmjury and newrological
disorders. so far there is no method available to effectively reverse the glial scar and restore neuronal functions.

1 tion D inti
The subject invention represents a completely novel approach to convert reactive astrocytes into functional
neurons in in vive brain for internal neural regeneraton and brain repair. The Penn State researchers completed
in vitro (human) and in vive (mouse) expennments demonstrating the trans-differentiation of astroghal cells mto
functional neurons that were immunopositive for neuronal markers such as doublecortin (DCX), Tujl. MAP2,
and newronal pucler (NeuN). Electrophysiological analyses demonstrated that cultured human astrocyte-
converted newons were fully functional, capable of firmg action potentials and releasing neurotransmitters such
as glutamate and GABA. Mouse brain slice recordings demonstrated that the in vivo reactive astrocyte-converted
neurons after bram mjury or Alzheimer's disease were also functional, firmg achon potentials and showing
synaptic responses. These results suggest that the astrocyte conversion technology may potentally restore lost
neuronal functions after bram mjury or Alzhemmer’s disease.

Status of Invention

In vitro and in vive expenments have been performed on both human and mouse astrocyte conversion mto
functional neurons. The researchers continue to frther develop their inifial discovery with governmental
research support Future research will leverage collaborations with academuc and indusmal laboratones to bumld
upon and target proousing climical apphcations of this technology.

Commercial Applications

This innovative in vive trans-differentiation technology may be the ﬁmndalian for a novel therapeutic strategy
that has broad commercial potential as chmcal treatments for bram injwry, spmnal cord mjury, stroke,
Alzhemmer’s disease, Parkinson disease, amyotrophic lateral sclerosis (ALS), and othu gha-related diseases.

Contact:  Matthew D. Smith Phone: (814) 863-1122
Sr. Technology Licensing Officer Fax: (814)865-3591
The Pennsylvania State University E-mail: mds126@psu.edu

Jan 2013



A simplified and conceptual paradigm of induced pluripotent stem cell (iPSC) transcription
factor (TF)-based transdifferentiation.
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Induced Pluripotent Stem Cell-Derived Neural Cells Survive and Mature in the Nonhuman Primate Brain
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Transdifferentiation




Different types of cellular transdifferentiation factors used for directing cell fate switch

" [ Fibroblasts Ascll, Brn2, Mytll, Lmx1a, anA21> Dopaminergic Neurons \(Eaiazzo etal., 2011
Fibroblasts Mash1, Nurrl, Lﬂ1{13> Dopaminergic Neurons | Pfisterer et al., 2011
Fibroblasts Ascll, Brn2, Mytll > Neurons Vierbuchen et al., 2010
Astrocytes Paxb, Ngn2, M35h1> Neurons Berninger et al., 2007
Fibroblasts Gatad, Tbx5 ,Mef2c> Cardiomyocytes leda et al., 2010
Hepatocytes Pdx1, Exendin4 > Pancreatic p cells Aviv et al., 2009
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Long-term survival and stability of iN cells generated from transplanted fibroblasts via

conversion in vivo
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Reactive astrogliosis
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Different types of reactive astrocytes in mouse cerebral cortex

Neurodegenerative disorders such as Alzheimer’s disease (AD)
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Dopaminergic fate determinants, innervation, and in vivo conversion of human astrocytes.
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Neural conversion of striatal astrocytes in situ
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Astrocyte
domain

Astroglial hypothesis of Alzheimer’s disease (AD)

AD progression
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In Vivo Direct Reprogramming of Reactive Glial Cells into Functional Neurons after Brain Injury

and in an Alzheimer’s Disease Model

Brain injury and Alzheimer’s disease model

Reactive glia Functional neurons

The pathological modification of astrocytes in the demented brains were initially observed by Alois

Alzheimer in 1910 who had found glial cells abundantly populating neuritic plaques.

Guo et al., 2014



NeuroD1 increases reprogramming efficiency in primary human fetal fibroblasts
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Direct Conversion of Reactive Glial Cells to Active Neurons via NeuroD1 Expression
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Only non-neuronal cells are infected by control retrovirus expressing GFP

Guo et al., 2014



In Vivo Conversion of Reactive Glial Cells into Functional Neurons after Brain Injury
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NeuroD1 Converts Astrocytes into Glutamatergic Neurons
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NeuroD1 Converts NG2 Cells into Glutamatergic and GABAergic Neurons
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Direct Conversion of Reactive Glial Cells to Active Neurons via NeuroD1 Expression
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NeuroD1 Converts Reactive Glial Cells into Functional Neurons in AD Mouse Brain In Vivo
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Guo et al., 2014
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Functional Characterization of Human Astrocyte-Converted Neurons
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Conclusion

Using a single factor (NeuroD1) for transdifferentiation of astrocytes and NG2 cells into neurons in vivo

Direct convertion reactive glia into neurons in injured or diseased brain tissue

Possibility of melting the inhibitory gliotic tissues for therapeutic gains

Efficiency is higher in older animals even in AD models

Use of retrovirus restricts the conversion to reactive proliferating astrocytes without affecting quiescent glia

Astrocytes — glutamatergic
NG2 cells - glutamatergic & GABAergic neurons

Functional neurons with deep cortical neuronal subtype



Issues that must be addressed before moving forward with potential clinical applications

A more efficient and safer method for introducing genetic material into patients’ cells

Demonstrate integration of converted neurons into appropriate neural circuits and whether this contributes to
functional improvement.

Elucidating the mechanisms of cell-type-specific conversion into neurons with distinct phenotypes is required

Astrocyte activation limits plaque growth and attenuates plaque-related dystrophic neurites. These activities may
require intimate contact between astrocyte and plaque.

Gfap and Vim gene deletion resulted in a marked increase in dystrophic neurites

The transdifferentiated cells still carry gene or predisposition to whatever disease being treated
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Suppl. Figure 2. Migration of NeuroD1-converted neurons after retroviral
injection into mouse cortex, related to Figure 1.

(A) NeuroD1-infected cells were mostly clustered around the injection sites at 3 DPI,
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except a few spreading in the
cingulate cortex region. (B) Two
weeks after viral injection,
NeuroD1-infected cells migrated
away from the center of injury
sites and spread more broadly
in the deep layer. (C) Plot of the
percentage of NeuroD1-infected
cells versus the distance
measured from the center of
injury sites. The number of
NeuroD1-infected cells was 263
for 3 dpi, 214 for 1 week, and
124 for 2 weeks. n = 3 animals
for each group. Scale bar, 100

pm
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Suppl. Fig. 3. Long-term survival of NeuroD1-converted neurons in mouse brain
in vivo, related to Figure 1.
A 2 Mon post infection (A) A NeuroD1-converted
neuron observed 2 months after
viral injection. The converted
neuron showed clear dendritic
spines (arrows). Scale bar, 20
pm.
(B) Cortical slice recording
revealed large spontaneous
synaptic events from a 2-month
old NeuroD1-converted neuron.

Guo et al., 2014



Suppl. Fig. 4. Characterization of NeuroD1-converted neurons in cultured mouse
astrocytes or NG2 cells, related to Figure 2 and 3.

(A) Our cultured mouse astrocytes were mostly immunopositive for astrocytic marker
GFAP (87.8 £+ 1.4%), with a few positive for Iba1 but rarely NG2.

(B) GFAP::NeuroD1-GFP retrovirus-infected cells (green) were immunonegative for
GAD67. (C) GFAP::NeuroD1-GFP retrovirus-infected cells were immunonegative for
cortical superficial layer marker Lhx2. (D) The majority of cells in our NG2 culture were
immunopositive for NG2 (~80%) with ~20% positive for microglia marker Iba1l. (E-F)
NG2::NeuroD1 retrovirus-infected cells were immunonegative for cortical superficial
layer marker Cux1 (E) and Lhx2 (F). Scale bars, 40 ym for Aand D; 20 um for B, C, E
and F.

Guo et al., 2014



Suppl. Figure 5. No intermediate neuroprogenitor stage during human astrocyte-
neuron conversion, related to Figure 5.

(A) Characterization of human astrocytes by comparing to human neuroprogenitor cells
(NPC) or mouse astrocytes in primary culture. Human and mouse astrocytes were
immunopositive for GFAP and S100p but negative for neural stem cell marker Sox2 or
Musashi. (B) Western blot confirmed that our cultured human astrocytes were different
from human NPCs. (C-D) NeuroD1-infected cells (green) did not show any increase in

the expression of neural stem cell marker Sox2 (C) or Musashi (D) over 1, 3 and 5 days
post infection. Scale bar, 20 pm; n = 3 cultures.
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Suppl. Fig. 6. Human astrocytes can be converted into neurons but microglia

cannot be converted, related to Figure 5.
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GFAP (937 £ 1%).

(B) NeuroD1-
converted neurons
from human astrocytes
were immunonegative
for GADGT. (C-D)
Human astrocyte-
converted neurons
were largely negative
for cortical superficial
layer marker Cux1 (C)
and Lhx2 (D). (E) The
majority of cells in our
human microglia
culture were positive
for Ibat (97.1 £ 1.1%).
(G-H) Human
microglia not
converted into neurons
by MeurcD1 (20 DFI,
DCX negative). n= 3-5
cultures. Scale bars,
A0 pm for (A) and (E-
H); 20 um for (B-D).
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Direct neural conversion from human fibroblasts takes place in vivo
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Dlrect conversion of human flbroblasts to dopaminergic neurons
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