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Motivation

Study blood supply and oxygenation of the brain
IN VIVO



Background: methods to functionally
study blood oxygenation and

vasculature
o Electrodes

. electron paramagnetic resonance methods e.g.
fMRI

« phosphorescence lifetime—based two-photon
microscopy (TPM)

« hemoglobin optical absorption—based methods
_ wide-field ontical mi

- Photoacoustic tomography (PAT)
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phosphorescence

« specific type of photoluminescence related to
fluorescence but much slower
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A = intersystem crossing
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http://en.wikipedia.org/wiki/Phosphorescence



oxygen-dependent quenching of
phosphorescence
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|dea

« Combine oxygen-dependent quenching of
phosphorescence with two-photon microscopy

- Direct measurement of O2 partial pressure
- Independent of optical properties of tissue

- Precisely localized

- Measurements not only on surface but also in the
tissue possible



The problem

,unfortunately, direct coupling of
phosphorescence with two-photon microscopy
IS hampered by extremely low two-photon
absorption crosssections of phosphorescent
probes, necessitating very high excitation
powers, long acquisition periods and/or
exceedingly high probe concentrations®



The solution

» Specially designed two-photon—enhanced
phosphorescent nanoprobe platinum porphyrin—
coumarin-343 (PtP-C343)

Combined with
« Optimized microscopy setup



PtP-C343

coumarin-343 units 2
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Upon excitation, Pt porphyrin undergoes

fast intersystem crossing into its triplet state and
emits phosphor

escence, which is quenched by molecular
oxygen in a diffusion-

controlled manner. Phosphorescence decay
lifetime (typically

several tens of microseconds) Is inversely
proportional to pO 2

(via Stern-Volmer relationship), thus forming the

cinnal far
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Calibration

PtP-C434, pH 7.2
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Experimental Setup

Objective

/

:

PtP-C343

- intra-arterially

FITC-intravenously - intra-parenchymal
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Oxygen tension In cortical
microvasculature

approximately 100 pO, values in 30-um steps down to 240 ym below the cortical
surface in the mouse brain
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Oxygen tension In cortical tissue

PtP-C343 injected directly into the interstitial space
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Oxygen tension In cortical tissue
and microvasculature
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Assessment of phototoxicity




Summary

« Measurements of vascular and parenchymal
oxygen pressure possible

« Low temporal resolution
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Background: photoacustic
tomography

\ Ultrasonic . PAT: detector is
emission not focused.
Mathematical
. - - reconstruction
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Photoacoustic microscopy (PAM)

d
g Wave plates
I

¢ g88

532 nm, 3 ps

b

Scanning Laser MEMS
ol sehame for
— 3D imaging
532 nm, 3 ns

Mirrar

 excitation laser beams and the
detection acoustic axis confocally
steered by a customized water-
immersible MEMS
(microelectromechanical system)
scanning mirror

. lateral resolution (perpendicular to x)
IS ~3 um

« Axial resolution is ~15 uym

. Temporal resolution:
« Laser pulse repetition rate: 500kHz
o 1D: 100kHz
o 2D: 400Hz (3mm)
« 3D: 1Hz (3x2mm?)



Saturable absorption w.wige

Absorption

Incoming photon is
absorbed by the atorm
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Incoming phaoton is
absorbed by the atom

https://readingpenrose.files.wordpress.com/2014/04/absorption-1.gif

At sufficiently high incident light intensity,
atoms in the ground state become
excited into an upper energy state at
such a rate that there is insufficient time
for them to decay back to the ground
state before the ground state becomes
depleted, and the absorption
subsequently saturates”



Absorption saturation of oxy- and deoxy-hemoglobin
(HbO, and HbR)
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Structural capabilities of the system

5 x 10 mm? region of the mouse
brain through intact skull with the
scalp removed. optical focal plane
~250 ym beneath skull surface

Morm. PA amplitude

(acquisition
time: ~15 s).



Structural capabilities of the system

depth-scanning of the optical focal zone with a z-step size of 100 um,
imaging depth of ~0.7 mm possible
= effective pixel count of ~47 in focus along the depth direction.

PAM Two-photon microscopy

=

100 um

100-200 pm

300-400 pm

500-600 um

100 pm

|
Imaging of deep capillaries not possible!



Structural capabilities of the system

Comparison to TPM
PAM Two-photon microscopy

Pia-vessels
Contrast: FITC-labelled dextran

100-200 um

300-400 um

500-600 pym



Effect of the skull

(a) Skull intact (b) Skull/dura removed

1
Normalized PA

amplitude

large vessels imaged with greater SNR,
more deep capillaries imaged, but spatial
resolution only marginally improved



Calibration of O, measurements

Tube 1 Tube 2
E (a) (100% sO,) (45% sO,) (b)
g‘"‘tzh 1000 n.J 1.0 —o—o
2 09- : Q' 0.8 error
S 06 - % oed <3% with
ﬁ - . 800 nJ % 0.4 F_.____.__-.---. pUISe
E 0.3 g > , _
< < o » Tube1 €ENEIrgIES
o < 0.2
0 T T T 1 & Tube2 2300 nJ
0 02 06 09 1.2 0.0

Gas analyzer-measured sO,, 600 nJ L
Pulse energy (pJ)

Comparison to blood (c)

phantoms 400 nJ 2.0
. Average measurement s 18] e TubezTuer ~ CHON
error (s.e.m.) ~2.7% . <2% with
200 nJ z 1.04 pulse
& o5 energies
=300 nJ
0.0 1

00 02 04 06 08 10
Pulse energy (pJ)

=
o
o
=
-



Assessment of toxicity

Left hem Right hemisphere
(close-u p) (close-up)

(a)

TPM with FITC
. No leakage no burn damage



O2 measurements In rest

« Mapping of sO, of the mouse brain vessels using

« PW-sO,

« acquisition time: ~40 s

 pulse energy: 400 nJ

. honsaturated PA signal to correct for optical
attenuation and the laser spot size

,1he averaged sO 2 level observed in the skull vessels
was lower than that in the cortical vessels, a result
consistent with the low-oxygenation microenvironment
in

bone marrow.”

(SV = skull vessel)




O2 measurements in somatosensory cortex
upon sensory stimulation

Brain response to stimulations
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Analysis of depth

o
Capillary bed
b
{ } 30+ — Artery
] -=- Vein
2% 2 Capillary . responding region covers a
58 depth range of 50—-150 um
EEE“ ot beneath the cortical surface
52 o
L ]
. — « amplitude responses from the

deep capillary beds are stronger
than those from the major
arteries and veins



Analysis of vessel dilatation
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. the artery dilated substantially in
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Analysis of blood flow speed by fast line
scanning
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Analysis of blood flow speed by fast line
scanning
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Stimulations induced a substantial
increase in blood flow speed
in both arteries and veins



Analysis of sO, levels in subregions

C 1.0
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Fractional change (%) QL

Estimation of cerebral oxygen
metabolism
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Comparison of the methods

PAT TPM
Preparation of the animal Removal of skin Cranial window, injection
Xy-resolution
z-resolution
penetration depth
Speed
Oxygen level in vessel

Oxygen level in
parenchyma

COsSts



Thank you!
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