SYNTHETIC BIOLOGY

Gibson DG et al., Science 2010

SYNTHETIC BIOLOGY FOR *DE NOVO*ASSEMBLY OF MEMORY DEVICES – GLOSSARY

(Non-)volatile memory – synthetic memory circuits (do not) need active cellular processes to maintain their state

volatile memory > e.g. transcription-based

non-volatile m. > recombination-based

volatile memories are bistable stochastic switching between states should be rare

LOGIC GATES

Basic Logic Gates

_A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

$$\begin{array}{ccc}
A & & & \\
& & & \\
B & & & \\
\end{array}$$

$$\begin{array}{c} A \\ B \end{array} \begin{array}{c} OR \\ \end{array} \begin{array}{c} Y \end{array}$$

GENETICALLY ENCODED OPERATORS AND REGULATORS IN VITRO

In vitro

In vitro memory circuits are typically composed of interlocking negative and positive feedback loops that form a bistable core

Nucleic acid hybridization

GENETICALLY ENCODED OPERATORS AND REGULATORS IN VIVO

PROTEIN PHOSPHORYLATION

Phosphorylation

TRANSCRIPTIONAL FEEDBACK LOOPS

Positive feedback

Double negative feedback

RNA EDITING

RNA editing

APPLICATIONS OF SYNTHETIC BIOLOGY

PAPER #1 - KOTULA JW ET AL., PNAS 2014

«PROGRAMMABLE BACTERIA DETECT AND RECORD AN ENVIRONMENTAL SIGNAL IN THE MAMMALIAN GUT"

REPROGRAMMING THE MICROBIOME

The Scientific American

MEMORY ANALYSIS OF E. COLI

Modify E. coli with memory capabilities, transfer into mice, record events during antibiotic exposure

- Prerequisites

- inital «nonmemory» state should be highly stable, only failing as a result of mutation
- «memory» state should also be highly stable
- Chromosomal integration instead of plasmids to minimize loss of genetic information
- Integrated elements should not impose high fitness burden on the host

TRIGGER/REPORTER SYSTEM WITH A TOGGLE SWITCH

cl/Cro//tetP-Cro SYSTEM FROM BACTERIOPHAGE LAMBDA

- repressor state of induction-deficient cl ind-lysogen only fails due to mutation
- little burden on bacterial host since only 100-200 monomers of cl ind- are present per cell, and, if activated < 1000 molecules of Cro
- Tn10 tetracycline repressor is particularly sensitive to anhydrotetracycline
 (ATC) >> 100 ng/mL ATC will cause full derepression of the promoter without
 inhibiting growth of tetracycline-sensitive E.coli

SELECTING THE OPTIMAL MUTANT

ATC EXPOSURE LEADS TO CI>CRO SWITCH FOR >5D IN VITRO

DETECTION OF ATC IN THE MAMMALIAN GUT

- PAS132: mutated clone chosen for analysis
 - Contains a mutation in rspL, conferring resistance to Streptomycin
- Colonization of mice with E. coli PAS132
 - Female Balb/c mice received 10⁷ bacteria per animal via oral gavage while receiving streptomycin in the drinking water (+/- ATC)

ATC-INDUCED LASTING CI>CRO SWITCHES *IN VIVO*

ATC-INDUCED LASTING
CI>CRO SWITCHES IN VIVO
IN AN UNCHARACTERIZED
(E.COLI 16S RIBOSOME
CONTAINING)
COLIFORM BACTERIUM

CONCLUSIONS

- Stable (& bistable) expression system in 2 different E.coli (one as yet uncharacterized) strains to record exposure to antibiotic treatment
- Lasting recordings over hours to days (and multiple cell cycles) with no significant fitness burden and no observed «spontaneous», stochastic switching of states
- <> FLP based recombination systems are non-volatile and may be leaky due to constitutive low expression of FLP recombinase
- Stable cl/Cro system could be completely transformed into E. coli and may further have stabilizing function on the transcripts
- May lead to design of efficient, probiotic bacteria for diagnostics or treatment

PAPER #2 - GOLDMAN N ET AL., NATURE 2014

"TOWARDS PRACTICAL, HIGH-CAPACITY, LOW-MAINTENANCE INFORMATION STORAGE IN

SYNTHESIZED DNA"

All 154 of Shakespeare's sonetts (ASCII «.txt»)

Watson&Crick, Nature 1953 («watsoncrick.pdf»)

>> 757'051 bytes

«EMBL-EBI.jpg»

26s, «ihaveadream.mp3»

Huffmann code (ASCII «.txt»)

- 4-fold redundancy per DNA fragment
- Reverse complements of each fragment to minimize data loss
- total of 153,335 strings of DNA, each comprising 117 nt (100 nt data + 17 nt barcoding)
- No homopolymers

Sequencing on Illumina HighSeq In «paired-end» mode

79.6 x 10⁶ read-pairs of 104 bases in length

TROUBLESHOOTING

2x25bp could not be assigned > manual filling through neighbor comparison > «100% correctly aligned sequences»

CONCLUSIONS & OUTLOOK – ENCODING LARGER DATA VOLUMES

Indexing DNA grows
logarithmically to the encodable data, while total amount of synthetized DNA for coding grows sub-linearly

CONCLUSIONS & OUTLOOK – READ ERRORS AS A FUNCTION OF COVERAGE

- Error is zero when ≥2% of the reads are used taken from the originally obtained 79.6 × 10⁶ readpairs of all but "watsoncrick.pdf"
- Manual correction of «watsoncrick.pdf» leads to a minimal error rate of 0.0036%

CONCLUSIONS & OUTLOOK – COST EFFECTIVENESS

CONCLUSIONS & OUTLOOK – COST EFFECTIVENESS

 Costs can further be decreased by lower sequencing coverage (now mean sequencing coverage ~ 1'308x)

- ~ 80 PB (80x1000 TB) of data as of writing of Paper, growth of ~15 PB per year
- 10% is maintained on disk, CASTOR migrates regularly between tapes
- Access to old data decreases considerably after 2-3 years after aquisition
- Current costs ~ 12'400\$ per MB for coding and ~220\$ per MB for decoding

CONCLUSIONS & OUTLOOK

- With current synthesis & reading costs as well as current coding scheme, DNA-based storage may be cost-effective for archives of several megabytes within a ~600-5'000 yr period
- If costs decrease by 1 log, ~50-500 yr period
- If costs decrease by 2 logs, < 50 yrs
- ~2.2 PB of information per gram DNA
- long-term storage seems to be evolutionary proven

Cost Per Base of DNA Sequencing and Synthesis

Cost Per Base of Synthetic DNA

http://www.synthesis.cc/2011/06/new-cost-curves.html

PAPER #3 – YANG ET AL., NATURE METHODS 2014 "PERMANENT GENETIC MEMORY WITH >1-BYTE CAPACITY"

LSTP «large serine-type phage» integrases

finding LSTP integrases

CHARACTERIZATION OF MEMORY SWITCHES AND ORTHOGONALITY

CREATING A MEMORY ARRAY WITH 11 ORTHOGONAL INTEGRASES FOR RECORDING OF 2^11 = 2048 DIFFERENT STATES (> 1 BYTE)

LOGIC GATES

Basic Logic Gates

_A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

$$\begin{array}{c} A \\ B \end{array} \begin{array}{c} OR \\ \end{array} \begin{array}{c} Y \end{array}$$

LOGIC AND-GATE

CIRCUITS OF MULTIPLE RECOMBINASES

