HIV-1 Vaccine

Presented by Duo Li 4 February 2014

HIV-1 vaccine

BACKGROUND

Overview: HIV-1 vaccine approaches

induce **antibodies**, especially broadly neutralizing

induce responsive CD4+ and/or CD8+ **T cells**

modulate natural killer
cells, regulatory T cells,
etc.

design immunogen containing epitopes recognized by T cells when presented by given HLA molecules

Reference: McMichael & Haynes, Nat Immunol ,(2012)

Three possible protective outcomes of an HIV-1 vaccine

<u>Reference</u>: McMichael & Haynes, *Nat Immunol*,(2012)

HIV-1 vaccine

A brief history of HIV-1 vaccines

- 1984: prediction that vaccine against HIV available within 2 years [1]
- by 2008: already >50 candidate vaccines reached clinical trials [2]
- few reached large-scale testing (phase III) [2,3]
 - AIDSVAX B/E
 - •STEP (MRK rAd5)
 - RV144 (prime + boost):

 ongoing work to understand why RV144 showed efficacy and to design improved vaccines [3]

2012: "There is now considerable new optimism in the HIV-1 vaccinedevelopment field because of the remarkable progress in research over the past 3 years." [3]

References:

[1] Editorial, Lancet, (2009); [2] McElrath et al, Lancet, (2008); [3] McMichael & Haynes, Nat Immunol, (2012)

HIV vaccine approaches and efficacy trials

Table 1. HIV vaccine efficacy trials.

	Efficacy trial	Vaccine	Population	N	Efficacy	Other significant results	Immune response	Immune correlates of risk	
Protein subunit vaccines	VAX004	AIDSVAX B/B (rgp120 immunogens)	Primarily high- risk MSM	5403	None [Flynn <i>et al.</i> 2005]	N/A	Weak nAb response [Gilbert <i>et al.</i> 2010]	N/A	North America, Netherlands
	VAX003	AIDSVAX B/E (rgp120 immunogens)	Injection drug users	2546	None [Pitisuttithum et al. 2006]	N/A	Weak nAb response [Montefiori et al. 2012]	N/A	Thailand
Viral vector vaccines	Step	MRKAd5 HIV- 1 (rAd5 vector expressing Gag, Pol, and Nef)	Primarily high- risk MSM	3000	None; trial halted after meeting prespecified futility boundaries [Buchbinder et al. 2008]	Significantly increased risk of HV infection in men who were both Ad5- seropositive and uncircumcised, which waned with time since vaccination [Duerr et al. 2012]	CD8 ⁺ T-cell response detected in the majority of vaccinees, although weak and of narrow breadth [McElrath <i>et al.</i> 2008]	N/A	North and South America the Caribbean, Australia
	HVTN 503/ Phambili	Same as Step	Primarily heterosexuals	801	None; enrollment halted after lack of efficacy seen in Step [Gray <i>et al.</i> 2011b]	N/A	Similar to Step [Gray et al. 2011b]	N/A	
Heterologous prime- boost regimens	RV144	ALVAC (canarypox vector expressing Env, Gag, and Pol) prime followed by AIDSVAX B/E boost	Primarily low-risk heterosexuals	16,402	31.2% overall efficacy for prevention of HIV-1 infection in the modified intention-to- treat analysis [Rerks-Ngarm <i>et al.</i> 2009]; no subsequent effect on viremia or CD4 count in vaccinees who were infected [Rerks-Ngarm <i>et al.</i> 2012]	68% efficacy for low or medium risk participants, no efficacy in the high-risk group; efficacy was highest over the first 12 months and then fell rapidly [Robb et al. 2012]	Weak nAb response [Montefiori et al. 2012]. Moderate CD4* T- cell response; the CD4* T-cell response; the CD4* T-cell response; the CD4* T-cell response; the CD4* T-cell response; the CD4* Coll response; the COLL response; the COLL response	Binding of IgG to the V1 and V2 regions of Env correlated with protection; protection was mitigated by the presence of plasma IgA directed against Env [Haynes et al. 2012a]	Thailand
DNA vaccines	HVTN 505	VRC-HIVDNA016- 00-VP (DNA expressing Gag, Pol, Nef, and Env) prime followed by VRC-HIVADV014- 00-VP (rAd5 expressing Gag, Pol, and Env) boost	High-risk MSM	2504	None; trial halted after meeting prespecified futility boundaries	Awaiting final trial results	Awaiting final trial results	N/A	United States
	HN, human izing antibu	n immunodeficiency viru ody; rgp, recombinant gl	us; HVTN, HIV Vaccii lycoprotein; rAd5, re	ne Trials Ne ecombinant	etwork; IgG, immunoglo adenovirus serotype 5.	bulin G; MSM, men wh	to have sex with me	en; nAb, neutral-	

Current vaccine challenges & strategies

(both antibody- and T cell-based vaccines)

An effective vaccine needs to...

- closely match sequences of circulating HIV-1
- account for the variability of circulating HIV-1 strains
- avoid immune escape
- promote vaccine-induced responses over more dominant but less effective natural immune responses

Strategies to deal with HIV-1 diversity

reviewed by Letourneau et al. (2007)

Immunogen design	Advantages/Support	Disadvantages
Single natural isolate	 simple many reports of cross- clade reactive T cell responses 	 unrealistically high peptide concentration unlikely to provide sufficient protection
"Centralized" sequences	 evidence of immunogenicity and T cell response in small-scale animal & human trials 	 "may be stretched too far for optimal coverage"
Cocktail of immunogens from multiple clades	 promising initial results with responses to all antigens in cocktail 	 potential for immune interference
"Mosaic" immunogen designed computationally	 based on intact proteins → can be naturally processed and presented 	 potential for immune interference potential that responses to variable regions detract from responses to conserved regions

Immunodominant vs. subdominant

- Immunodominant: determinants are recognized by the most abundant cognate T cell populations.
- **Subdominant:** determinants are recognized by **less abundant** T cell populations.
- Dominant responses limit responses to subdominant antigens.

Vaccines targeting conserved regions

Advantages:

- highly conserved sub-protein regions are common to most HIV-1 strains
- immune escape mutations in conserved regions are costly

Challenges:

immune responses to conserved regions tend to be subdominant

must compete with faster-changing dominant epitopes for both Tcell priming and target recognition

But: "it should be possible to re-direct CD8+ T-cell responses to focus on particular conserved epitopes"

<u>References</u>: McMichael & Haynes, *Nat Immunol*,(2012); Letourneau *et al.*, *PLoS ONE*,(2007); M. Altfeld & T. M. Allen, "Hitting HIV where it hurts: an alternative approach to HIV vaccine design", *Trends Immunol*,(2006).

Timeline of HIVconsv vaccine development

group of Tomas Hanke (Oxford)

Publication date

References

2007	Vaccine design, preliminary testing	 * immunogen design * expression in human cells * immunogenicity in BALB/c mice * presence of responses in natural HIV-1 infection 	Letourneau <i>et al. PLoS ONE</i> 2:e984 (2007)
2010- 2012	Efficacy in animal models	 * confirm immunogenicity in mice and macaques * optimize delivery regime * other vaccine types also highly effective! 	Rosario <i>et al., Eur J Immunol</i> 40:1973-1984 (2010) Knudsen <i>et al., J Virol</i> 86:4082- 4090 (2012) Rosario <i>et al., AIDS</i> 26:275-284 (2012)
2013	Safety in animal models	* intramuscular injection of all 3 vector-delivered vaccines well- tolerated in BALB/c mice	Ondondo <i>et al., Vaccine</i> , in press (2013)
2013	First human trial (phase I clinical trial)	 * test safety and efficacy in HIV- 1/2- uninfected human volunteers 	Borthwick <i>et al., Molecular</i> <i>Therapy</i> , accepted (2013)
	HIV-1 vaccine		11

Design and Pre-Clinical Evaluation of a Universal HIV-1 Vaccine

Sven Létourneau^{1#a}, Eung-Jun Im¹, Tumelo Mashishi¹, Choechoe Brereton^{1#b}, Anne Bridgeman¹, Hongbing Yang¹, Lucy Dorrell¹, Tao Dong¹, Bette Korber^{2,3}, Andrew J. McMichael¹, Tomáš Hanke¹*

1 Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, United Kingdom, 2 Los Alamo National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico, United States of America, 3 The Santa Fe Institute, Santa Fe, New Mexico, United States of America

VACCINE DESIGN, PRELIMINARY TESTING

Main message:

- Vaccine tested: pTH. HIV consv, AdHu5.HIVconsv, MVA.HIVconsv
- Detect HIVconsv protein by immuno histochemical stainning
- Test immunogenicity in BALB/c mice, transgenic mice HLA-A2restricted, PBMC sample from HIV-1 infected patients

Design of the HIVconsv immunogen

в

- 1 MEEKAFSPEVIPMFTALSEGATPQDLNTMLNTVGGHQAAMQMLKDTINE EAAEWDR
- 2 IYKRWIILGLNKIVRMYSPVSILDIRQGPKEPFRDYVDRF
- 3 ARNCRAPRKKGCWKCGKEGHQMKDCTERQANFLGKIWPS
- 4 RWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTQI GCTLNFPISPIETVPVKLKPGMDGPKVKQWPLTEEKIKALVEICTEMEKEG KISKIGPENPYNTPVFAIKKKDSTKW
- 5 RKLVDFRELNKRTQDFWEVQLGIPHPAGLKKKKSVTVLDVGDAYFSVPL DEGFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAIFQSSMTKILEPF RAQNPEIVIYQYMDDLYVGSDLEIGQHR
- 6 MENRWQVMIVWQVDRMRIRTWKSLVKHH
- 7 LTEEAELELAENREILKDPVHGVYYDPSKDLIAEIQ
- 8 YWQATWIPEWEFVNTPPLVKLWYQLEK
- 9 NVTENFNMWKNDMVDQMHEDIISLWDQSLKPCVKLTP
- 10 WVPAHKGIGGNEQVDKLVSQGIRKVLFLDGIDKAQ
- 11 AKEIVASCDKCQLKGEAMHGQVDCSPGIWQLDCTHLEGKVILVAVHVAS GYIEAEVIPAETGQETAYFLLKLA
- 12 MNKELKKIIGQVRDQAEHLKTAVQMAVFIHNFKRKGGIGGYSAGERI
- 13 WKGPAKLLWKGEGAVVIQDNSDIKVVPRRKAKIIRDYGKQMAGADCV
- 14 FLGAAGSTMGAASMTLTVQARQLLSGIVQQQNNLLRAIEAQQHLLQLTV WGIKQ
- 15 ACTPYDINQMLRGPGRAFVTIPNPLLGLD

HIV-1 vaccine

С

Fragm	Protein	Clade	Identical consensus	HIV _{CONSV} (aa)
1	Gag	С	A2, CRF08	1-56
2	Gag	D	M, A2, F, G, K, CRF01	57-96
3	Gag	A	M, C, G, CRF01	97-135
4	Pol	в		136-265
5	Pol	С		266-393
6	Vif	D	В	394-421
7	Pol	A		422-457
8	Pol	в	M, A, C, D, F, CRF01, CRF02, CRF0	8 458-484
9	Env	С		485-521
10	Pol	D		522-556
11	Pol	A		557-629
12	Pol	в	M, A2, C, D, F, G	630-676
13	Pol	С	CRF08	677-723
14	Env	D	в	724-777
15	Added	macaq	ue, mouse and mAb epitopes	778-806

D

CDABCDABCDABCD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Overlapping peptide pools

				_
1	2 3	4	5	6
🗆 Gag	Pol		Vif 🛛	Env
🖾 Mamu	A*01 epito	pe 🖪	H-2Dª & Lª	epitope
mAb e	pitope Pk			

Design of the HIVconsv immunogen

Vaccine construction and basic immunogenicity

pTH DNA: pTH. HIV consv — D Human adenovirus serotype 5(AdHu5): AdHu5.HIVconsv — A Modified vaccinia virus Ankara(MVA) : MVA.HIVconsv — M

Breadth of HIVconsv vaccine induced immune responses in the BALB/c mice

Breadth of HIVconsv vaccine induced immune responses in the BALB/c mice

From left to right-no peptide, epitope H, G1, G2, P1, P2, P3.

HIVconsv vaccine induced HLA-A2-restricted responses in transgenic mice

Mice strain HHD, expresses MHC I molecule chimaeric human(α -1 and α -2) and mouse (α -3)*HLA-A*0201*heavy chain covalently linked to the human β 2m light chain. DAM regimen.

Generation of HIVconsv-specific responses in natural HIV-1 infection

Donor No.	HLA			HIV-1 Clade
	A*	B*	Cw*	
001 ^a	1, 11	44, 51	7, 15	n.a.
002 ^a	2, 3	7, 13	6, 7	n.a.
003 ^a	1, 24	15, 18	3, 12	n.a.
004 ^a	1, 0201	7, 40	2, 7	n.a.
005 ^a	2, 3	7, 15	3, 7	n.a.
006 ^a	1, 0301	7, 08	7, 97	n.a.
007 ^a	2, 23/24	57, 42	2, 17	n.a.
600 ^a	1, 2	5001, 55	3, 6	n.a.
009 ^a	0201, 29	44, 13	6, 1601	n.a.
010 ^b	0102, 3303	44, 5802	n.d.	B/D
011 ^в	2, 29	45, 5802	6, 1601	D/A2 (CRF16)
012 ^b	2	15, 4402	3, 5	В
013 ^b	01, 11	18, 35	4, 7	В
014 ^b	24, 3401	40, 56	1, 4	B/C (CFR07)
015 °	3, 11	15, 4402	0303, 05	В
016 ^c	2601, 6802	70, 81	03, 04	n.d.
017 ^c	24	7, 18	7, 16	n.d.
018 ^c	1, 6801	5001, 1517	6, 7	n.d.
019 ^c	2601, 6802	70, 81	3, 4	n.d.
020 ^c	29, 32	7, 4401	1601	n.d.
021 ^c	0201, 0205	7, 18	n.d.	n.d.
022 ^c	03, 11	4201, 5301	4, 17	С

HIV-

HIV+

^aHIV-1/2-uninfected subjects

^bUK HIV-1-infected patients vaccinated with HIVA vaccines

^cPatients infected with HIV-1 in Africa [4]

n.a. - not applicable; n.d. not done

: doi:10.1371/journal.pone.0000984.t001

HIV-1 vaccine

20

Recognition of HIVconsv-derived peptides by PBMC from HIV-1 infected patient

Summary

- The HIVconsv immunogen is a chimaeric protein assembled from protein regions rather than epitopes, enable broader coverage.
- Consensus sequences allow a geographically broad deployment of the vaccine.
- Artificial clade consensus sequence designed deal with intra-clade variability.
- Combines sequences of 4 clades sequentially to avoids epitope antagonism.
- With lower frequency of immunodominant epitopes, induce broader T cell responses.
- Have to further identify the influence of the junction regions.

Long peptides induce polyfunctional T cells against conserved regions of HIV-1 with superior breadth to single-gene vaccines in macaques

Maximillian Rosario¹, Anne Bridgeman¹, Esther D. Quakkelaar², Maire F. Quigley³, Brenna J. Hill³, Maria L. Knudsen⁴, Virginia Ammendola⁵, Karl Ljungberg⁴, Nicola Borthwick¹, Eung-Jun Im¹, Andrew J. McMichael¹, Jan W. Drijfhout², Hui Yee Greenaway⁶, Vanessa Venturi⁶, Daniel C. Douek³, Stefano Colloca⁵, Peter Liljeström⁴, Alfredo Nicosia⁵, David A. Price^{3,7}, Cornelis J. M. Melief² and Tomáš Hanke¹

- ¹ MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, UK
- ² Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
- ³ Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- ⁴ Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- ⁵ Okairòs S.r.l., Pomezia, Rome, Italy

⁶ Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, Australia

⁷ Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, UK

EFFICACY IN ANIMAL MODELS

Main message:

- Vaccine tested: pTH. HIV consv, AdHu5.HIVconsv, MVA.HIVconsv, SLP.HIVconsv, ChAdV63.HIVconsv, VREP.HIVconsv
- Immunophenotype and clonal composition of CM9specific CD8+ T-cell populations
- Test immunogenicity in macaques

DDDAM regimen induces high frequencies of HIV-1 spcific T cells responses in macaques

Time (Days)

HIV-1 vaccine

Adjuvanted SLP elicit T-cell responses superior epitope breadth compared with sORF genetic vaccines

Time (Days)

HIV-1 vaccine

sORF genetic vaccines do not maintain the breadth of SLP-induced responses

D

D

D A

M

0 12 32 48 61 97 112141159169189247259271400407414421427484493497504518526529546556583590595618

s

Time (Days)

s

M V

27

С

SLP.HIVconsv induces responses to multiple CD8+ and CD4+ T cell epitopes

HIVconsv peptide no.	HIV origin	Peptide sequence	ONE	OZONE	CTAVIA
(1, 2) ^{a)}	Gag	FSPEVIPMF	+ ^{b)}	+	+
14	Gag	EWDR-IYKRWIILGLN ^{c)}	_	+	_
15	Gag	IYKRWIILGLNKIVR	+	+	_
16	Gag	WIILGLNKIVRMYSP	_	+	_
17	Gag	GLNKIVRMYSPVSIL	+	+	+
(18,19) ^{a)}	Gag	YSPVSILDI	+	+	_
36	Pol	MIGGIGGFIKVRQYD	+	+	+
37	Pol	IKVRQYDQILIEICG KK ^{d)}	_	+	+
45	Pol	VNIIGRNLLTQIGCTKK ^{d)}	+	_	_
88	Pol	GSPAIFQSSMTKILE	+	-	_
89	Pol	IFQSSMTKILEPFRA	+	_	_
93	Pol	KNPEIVIYQYMDDLYV	_	+	_
97	Pol-Vif	SDLEIGQHR-MENRWQ ^{c)}	+	+	_
146	Pol	SPGIWQLDCTHLEGK	_	_	+
160	Pol	IIGQVRDQAEHLKTA	_	-	+
161	Pol	VRDQAEHLKTAVQMA	_	_	+
(162, 163) ^{a)}	Pol	KTAVQMAVF	_	+	+
164	Pol	VQMAVFIHNFKRKGGI	-	-	+
(167, 168) ^{a)}	Pol	YSAGERI-WK ^{c)}	+	+	_
173	Pol	GAVVIQDNSDIKVVP	_	_	+
(175, 176) ^{a)}	Pol	VVPRRKAKI	+	_	_
(182, 183) ^{a)}	Env	GSTNGAASMTL	+	+	+
(194, 195) ^{a)}	SIV Gag CM9	CTPYDINQML	+	+	+
198 ^{e)}	Env-SV5	RGPGRAFVTIPNPLL	_	_	+
199 ^{e)}	Env-SV5	RAFVTIPNPLLGLD	_	-	+

Table 1. Peptides and/or epitopes recognized by CD8⁺ T cells in HIVconsv-vaccinated rhesus macaques

^{a)} Sequence next to two peptides in brackets indicates that an optimal epitope contained within those peptides was used.

^{b)} A positive response means that specific IFN-γ release to peptide stimulation was detected on at least two separate occasions.

c) Junction between two adjacent regions in HIVconsv is shown by dash.

d) Peptides 37 and 45 were modified by the addition of two lysines at the C-terminus to increase solubility.

e) Peptides 198 and 199 are not derived from the conserved HIV-1 regions, but rather from a BALB/c mouse T-cell epitope in HIV-1 Env and mAb tag originating from simian virus 5, which were added to the HIVconsv immunogen to facilitate preclinical development.

HIV-1 vaccine

HIVconsv vaccines induce polyfunctional, oligoclonal T-cell populations

HIV-1 vaccine

Summary

- The DDDAM regimen, which mimics one of the planned clinical schedules, was highly immunogenic in macaques .
- Adjuvanted SLP.HIVconsv, partitioned and delivered at disparate anatomical sites, elicited broader and more potent T-cell responses that were neither induced nor maintained by single- ORF genetic vaccines.
- A "ceiling" effect appeared to operate for certain specificities with repeated vaccinations in a complex heterologous regimen, such that response magnitude was not enhanced substantially beyond a certain vaccination.
- The extent to which T cells elicited in response to HIVconsv vaccines actually recognize and kill HIV-1-infected human cells remains to be determined.
- The animals in this study cannot be challenged.

Superior Induction of T Cell Responses to Conserved HIV-1 Regions by Electroporated Alphavirus Replicon DNA Compared to That with Conventional Plasmid DNA Vaccine

Maria L. Knudsen,^a Alice Mbewe-Mvula,^b Maximillian Rosario,^c Daniel X. Johansson,^a Maria Kakoulidou,^a Anne Bridgeman,^b Arturo Reyes-Sandoval,^b Alfredo Nicosia,^{d,e,f} Karl Ljungberg,^a Tomáš Hanke,^{b,c} and Peter Liljeström^a

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden^a; The Jenner Institute, University of Oxford, Oxford, United Kingdom^b; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom^c; Okairòs, Rome, Italy^d; CEINGE, Naples, Italy^a; and Department of Biotechnology, University of Naples, Naples, Italy^d

EFFICACY IN ANIMAL MODELS

Main message:

- Vaccine tested: pTH. HIV consv, DREP.HIVconsv , MVA.HIVconsv, ChAdV63.HIVconsv
- Specific CD8+ T-cell responses
- Test immunogenicity in mice and macaques

DNA constructs and HIVconsv immunogen

Much lower doses of DREP.HIVconsv than plasmid pTH.HIVconsv DNA are required for indution of CD8+ T cell responses

The DREP.HIVconsv vaccine potently primes CD8+ T cells prior to a heterologous boost immunization

HIV-1 vaccine

35

MVA.HIVconsv dose test

DREP.HIVconsv-50ng pTH.HIVconsv-2.5ug 4 weeks later, boost with5x106 (high), 5x105 (medium), 5x104 (low) PFU MVA. HIVconsv
A 20-fold-lower dose of DREP.HIVconsv than of plasmid DNA induces an equivalent response in rhesus macaques

P: pTH.HIVconsv, 4mg, i.m.
D:DREP.HIVconsv, 400ug, i.m.
M: MVA. HIVconsv, 108PFU, i.m.
C: ChAdV63. HIVconsv, 1010 vp, i.m.

Summary

• Immunogenicity of DNA vaccines can be strongly enhanced by the use of an alphavirus replicon DNA vector (125 times lower dose) and EP (625 times lower dose).

- T cell responses primed by replicon DNA can be further boosted by recombinant MVA- and attenuated chimpanzee adenovirus-vectored vaccines.
- Does titration in macaques is necessary.

Prime-boost regimens with adjuvanted synthetic long peptides elicit T cells and antibodies to conserved regions of HIV-1 in macaques

Maximillian Rosario^a, Nicola Borthwick^{a,b}, Guillaume B. Stewart-Jones^a, Alice Mbewe-Mvula^{a,b}, Anne Bridgeman^{a,b}, Stefano Colloca^c, David Montefiori^d, Andrew J. McMichael^a, Alfredo Nicosia^{c,e}, Esther D. Quakkelaar^f, Jan W. Drijfhout^f, Cornelis J.M. Melief^f and Tomáš Hanke^{a,b}

EFFICACY IN ANIMAL MODELS

- Vaccine tested: pSG2.HIVconsv DNA(D) ,imiquimod/montanide-adjuvanted SLP.HIVconsv (S), MVA.HIVconsv(M), ChAdV63.HIVconsv (C)
- Specific CD8+ T-cell responses
- Test Prime-boost regimens of DDDCMS, DSSCMS and SSSCMS in rhesus macaques.

DDD, but not DSS or SSS, primes consistently low T cell responses

HIV-1 vaccine

DDD primes for robust CD4+ T-cell expansions by CM, and SLP.HIVconsv boost broadens CD4+ T cell responses

199 individual 15/11 peptides across HIVconsv

DDD primes for robust CD8+ T-cell expansions by CM

HIVconsv-specific T cells proliferate and are oligofunctional

HIV-1 vaccine

SLP.HIVconsv induces antibodies to conserved regions of Env

Summary

- DDD primed for the largest subsequent expansions of HIV-1-specific T cells.
- DSS primed for the highest titres of Env-specific antibodies .
- Electroporation spares the DNA vaccine dose and SLP broadens the specificity of T cells induced by single-gene genetic vaccines.

Vaccine 31 (2013) 5594-5601

Absence of systemic toxicity changes following intramuscular administration of novel pSG2.HIVconsv DNA, ChAdV63.HIVconsv and MVA.HIVconsv vaccines to BALB/c mice⁴

Beatrice Ondondo^a, Caroline Brennan^b, Alfredo Nicosia^{c,d}, Steven J. Crome^b, Tomáš Hanke^{a,*}

* The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom

^b Huntington Life Sciences, Huntington PE28 4HS, United Kingdom

^c Okairòs, Rome, Italy

^d CEINGE, Naples, Italy

SAFETY IN ANIMAL MODELS

Table 1	
Summary of animal treatments.	

Groupa	Treatment	Number	of animals Dosing										
		Male	Female	Day 1	Day 15	Day 29	Day 43						
1	Control	10	10	PBS	PBS	PBS	PBS						
2	DDDC	10	10	50 μg pSG2.HIVconsv ^b	50 μg pSG2.HIVconsv	50 μg pSG2.HIVconsv	5.95 × 10 ⁹ vp ChAdV63.HIVconsv ^b						
3	Control	10	10	PBS	PBS	PBS	ND						
4	MMM	10	10	2 × 10 ⁷ pfu MVA.HIVconsv ^c	2 × 10 ⁷ pfu MVA.HIVconsv	2 × 10 ⁷ pfu MVA.HIVconsv	ND						

ND - not dosed.

^a This summarised two studies UNO012 and UNO011 testing toxicity of DDDC and MMM regimens, respectively.
 ^b Injected volumes i.m. of the pSG2.HIVconsv DNA and ChAdV63.HIVconsv vaccines were 50 μl.
 ^c Injected volume i.m. of the MVA.HIVconsv vaccine was 20 μl.

Table 2

Macroscopic abnormalities	Parenteral sites (right hind limb, muscle and overlying
	skin)
Adrenals	Pever's patches
Aorta – thoracic	Pituitary
Brain	Prostate
Caecum	Rectum
Carcass	Salivary glands
Colon	-Submandibular ^{a,b}
Duodenum	-Parotid ^a
Epididymides	-Sublingual ^{a,b}
Eyes	Sciatic nerves ^a
Femurs ^a	Seminal vesicles ^b
Gall bladder	Skeletal muscle ^a
Harderian glands	Skin with mammary glands
Heart	Spinal cord
lleum	Spleen ^b
Jejunum	Sternum
Kidneys ^b	Stomach
Lachrymal glands	Testes ^b
Larynx	Thymus ^b
Liver ^b	Thyroid with parathyroids
Lungs ^b	Tongue
Lymph nodes	Trachea
-Mandibular	Ureters
-Popliteal	Urinary bladder
Oesophagus	Uterus and cervix ^b
Optic nerves	Vagina
Ovaries	
Pancreas	

Tissues examined at necropsy, weighed and subjected to histopathological examination.

 ^a Only one processed for examination.
 ^b Weighed (salivary glands weighed together, lung weight included mainstem bronchi).

Table 3a Haematology for DDDC.^a

Group/sex ^b		Hct (I/I)	Hb (g/dl)	RBC ($\times 10^{12}/l$)	Retic (%)	MCH (pg)	MCHC (g/dl)	MCV (fl)	WBC (×10 ⁹ /l)	$N(\times 10^9/l)$	$L(\times 10^{9}/l)$	$E(\times 10^{9}/l)$	$B(\times 10^9/l)$	$M(\times 10^9/l)$	LUC ($\times 10^9/I$)	Plt (×10 ⁹ /l)
1M	Mean	0.518	16.0	10.69	2.21	15.0	30.8	48.4	4.48	0.87	3.37	0.12	0.01	0.09	0.03	1100
	SD	0.0073	0.25	0.159	0.115	0.15	0.17	0.49	1.667	0.295	1.297	0.041	0.005	0.033	0.026	48.5
2M	Mean	0.512	15.9	10.67	2.28	14.9	31.0	48.1	6.80**	1.20*	5.28**	0.13	0.01*	0.13*	0.05	1198**
	SD	0.0097	0.23	0.210	0.144	0.31	0.42	0.80	1.172	0.223	1.108	0.051	0.005	0.042	0.012	65.0
1F	Mean	0.492	15.3	9.87	2.26	15.5	31.2	49.8	2.89	0.54	2.21	0.07	0.00	0.05	0.02	1018
	SD	0.0090	0.33	0.217	0.344	0.14	0.46	0.83	1.522	0.332	1.181	0.033	0.005	0.021	0.013	23.2
2F	Mean ^c	0.509*	16.0*	10.46**	2.88*	15.3*	31.4	48.7**	4.00	0.85	2.94	0.09	0.01	0.09	0.02	1119**
	SD	0.0167	0.64	0.387	0.683	0.17	0.68	0.86	2.407	0.545	1.796	0.053	0.005	0.057	0.021	90.3

Hct – haematocrit; Hb – haemoglobin; RBC – erythrocyte; Retic – reticulocyte; MCHC – mean cell haemoglobin concentration; MCV – mean cell volume; WBC – total white cell count; N – neutrophils; L – lymphocytes; E – eosinophils; B – basophils; M – monocytes; LUC – large unstained cells; Plt – platelet.

* Animals received 3 doses i.m. of pSG2.HIVcosv DNA followed by 1 dose i.m. of ChAdV63.HIVconsv.

b 1M - males control; 2M - males receiving DDDC; 1F - females control; 2F - females receiving DDDC.

t-Test: *p<0.05, **p<0.01.</p>

Table 3b

Haematology for MMM.ª

Group/sex ^b		Hct (I/I)	Hb (g/dl)	RBC ($\times 10^{12}/l$)	Retic (%)	MCH (pg)	MCHC (g/dl)	MCV (fl)	WBC (×10 ⁹ /l)	$N(\times 10^9/l)$	$L(\times 10^9/l)$	$E(\times 10^9/l)$	$B(\times 10^9/l)$	$M(\times 10^9/l)$	LUC ($\times 10^9/l$)	Plt (×10 ⁹ /l)
1M	Mean	0.466	15.8	10.62	2.59	14.8	33.8	43.9	1112	6.90	0.98	5.61	0.10	0.01	0.15	0.05
	SD	0.0143	0.43	0.318	0.192	0.21	0.48	0.57	23.9	0.866	0.259	0.683	0.015	0.006	0.048	0.010
2M	Mean ^e	0.458	15.3*	10.58	2.49	14.5**	33.4	43.3*	1053**	4.25**	0.66**	3.28**	0.17**	0.00**	0.10*	0.02**
	SD	0.0078	0.40	0.241	0.242	0.14	0.52	0.53	41.0	0.937	0.079	0.849	0.049	0.005	0.044	0.008
1F	Mean	0.449	15.3	10.08	2.50	15.2	34.1	44.6	973	3.93	0.73	2.99	0.09	0.00	0.11	0.02
	SD	0.0059	0.39	0.218	0.277	0.20	0.59	0.54	49.8	1.246	0.219	1.097	0.034	0.005	0.031	0.011
2F	Mean	0.463*	15.6	10.28	2.30	15.2	33.7	45.0	1047	4.31	0.75	3.33	0.12	0.01*	0.08	0.03
	SD	0.0172	0.38	0.322	0.389	0.43	1.09	0.35	90.8	1.476	0.317	1.242	0.031	0.004	0.016	0.019

Hct – haematocrit; Hb – haemoglobin; RBC – erythrocyte; Retic – reticulocyte; MCHC – mean cell haemoglobin concentration; MCV – mean cell volume; WBC – total white cell count; N – neutrophils; L – lymphocytes; E – eosinophils; B – basophils; M – monocytes; LUC – large unstained cells; Plt – platelet.

* Animals received 3 doses i.m. of MVA.HIVcosv.

b 1M - males control; 2M - males receiving MMM; 1F - females control; 2F - females receiving MMM.

c t-Test: *p < 0.05, ** p < 0.01.</pre>

Table 3c

Blood Chemistries-Parameters with statistically significant differences.

Group ² Sex		ALT (U/I)	AST (U/I)	Bili (µmol/l)	Urea (mmol/l)	Great (jumol/l)	Gluc (mmol/I)	Trig (mmol/I)	Na (mmol/I)	K (mmol/l)	Ca (mmol/I)	Phos (mmol/l)	Total Prot (g/l)	Alb (g(l)	Gamma (g/l)	A/ G ratio
MMM ^b (n=	10 per group)														
1M	Mean	40	54		6.16			1.00					52		1	1.62
	SD	9.3	10.0		0.287			0.241					1.4		0.0	0.119
2M	Mean	56**	91**		7.01*			1.56**					54**		2**	1.50*
	SD	12.9	30.8		1.002			0.519					1.3		0.4	0.079
1F	Mean	40	74						151	4.1	2.48		51	33	1	1.97
	SD	19.8	32.5						1.1	0.36	0.052		1.6	1.6	0.0	0.157
2F	Mean	57*	117**						152*	3.7*	2.56		55**	35*	3**	173**
	SD	16.4	33.5						14	0.38	0.463		1.6	1.1	0.5	0.062
DDDC ^c (n =	10 per group)															
1M	Mean					10		1.52		4.0			49		30	1.48
	SD					1.3		0.233		0.31			1.2		0.8	0.076
2M	Mean					8*		2.09*		4.3			48°		28**	1.42*
	SD					15		0.768		0.34			1.6		1.0	0.065
1F	Mean			1	870		10.12	1.49			2.38	2.31				
	SD			0.0	1276		1.256	0.624			0.059	0.322				
2F	Mean			2**	672**		12.43°	0.91			2.46**	3.03**				
	SD			Q.5	1.028		2.257	0.222			0.066	0.571				

ALT – al anine aminotransferase; AST – aspartate aminotransferase; Bili – Total bilirubin; Creat – creatinine; Gluc – glucose; Trig – triglycerides; Phos – inorganic phosphorus; Alb – Albumin; Gamma – γ -globulin; A/G – albumin/globulin ratio.

* 1M- males control; 2M- males receiving MMM ; 1F- females control; 2F-females receiving MMM.

^b Animals received 3 doses i.m. of MV AHIV cosv.

^c Animals received 3 doses i.m. of pSG2.HIV cosy DNA followed by 1 dose i.m. of ChAdV63.HIV consy.

^d t-Test: *p<0.05; **p<0.01.

Table 4

115	sue	en	ang	em	ent	

Group	Treatment	Day of	Number of animals/	Organ/tissue examined ^a								
		examination	tissues examined	Spleen	Spleen		Popliteal lymph node (right)					
				Male	Female	Male	Female	Male	Female			
1	Control	Day 50	10	0	0	0	0	0	0			
2	DDDC	Day 50	10	0	5/10	0	0	0	0			
3	Control	Day 36	10	0	0	0	0	0	0			
4	MMM ^c	Day 36	10	0	0	9/10	8/10	6/10	8/10			

^a The numbers in the table indicate the number of animals in each group with significantly enlarged organs.

^b Animals received 3 doses i.m. of pSG2.HIVcosv DNA followed by 1 dose i.m. of ChAdV63.HIVconsv.

^c Animals received 3 doses i.m. of MVA.HIVconsv.

Table 5

Microscopic pathology at the injection site.^a

Observation	Group 1 (Group 1 (control)		DDDC ^b)	Group 3 (control)	Group 4 (MMM ^c)		
	Male	Female	Male	Female	Male	Female	Male	Female	
Myofibre inflammation	0	0	10/10	9/10	_	-	-	-	
Myofibre regeneration	0	0	5/10	8/10	-	-	-	-	
Myofibre necrosis/degeneration	0	0	3/10	3/10	-	-	-	-	
Interstitial inflammation	0	0	4/10	9/10	-	-	-	-	
Intermyofibre/interfascicular/perimysial	-	-	_	_	0	0	10/10	10/10	
inflammatory cell infiltrate									
Dermal inflammatory cell infiltrate	-	-	-	-	4/10	5/10	6/10	8/10	
Number of tissues examined	10	10	10	10	10	10	10	10	

Table 6

Microscopic changes in the lymph nodes.^a

Observation	Group 1 (control)		roup 1 Group 2 ontrol) (DDDC ^b)		Group (contro	Group 3 (control) Popliteal		Group 4 (MMM ^c)								
	Pop	Popliteal In M F M		Inguinal				Inguinal		liteal	Inguinal		Popliteal		Inguinal	
	М			F	M F		M F		M F		M F		M F		М	F
Increased cellularity - generalised	0	1/10	0	0	7/10	6/9	0	0	_	_	_	-	-	-	_	-
Plasmacytosis	0	0	0	0	4/10	1/9	0	1/10	0	0	-	-	4/10	4/10	-	-
Perinodal Inflammation	0	0	0	0	5/10	1/9	0	0	-	_	-	-	-	-	-	-
Increased germinal centre development Number of tissues examined	8	10	10	10	10	9	10	10	0 9	0 9	ō	ō	9/10 10	10/10 10	5/6 6	7/8 8

^a The numbers in the table indicate the number of animals in each group with significant microscopic changes. ^b Animals received 3 doses i.m. of pSG2-HIVcosv DNA followed by 1 dose i.m. of ChAdV63.HIVconsv.

^c Animals received 3 doses i.m. of MVA.HIVconsv.

Vaccine-elicited Human T Cells Recognizing Conserved Protein Regions Inhibit HIV-1

Nicola Borthwick^{1,2}, Tina Ahmed^{1,2}, Beatrice Ondondo¹, Peter Hayes³, Annie Rose⁴, Umar Ebrahimsa⁴, Emma-Jo Hayton⁴, Antony Black^{4,5}, Anne Bridgeman^{1,2}, Maximillian Rosario^{2,6}, Adrian VS Hill^{1,4,7}, Eleanor Berrie⁷, Sarah Moyle⁷, Nicole Frahm⁸, Josephine Cox³, Stefano Colloca⁹, Alfredo Nicosia⁹–¹¹, Jill Gilmour³, Andrew J McMichael², Lucy Dorrell² and Tomáš Hanke^{1,2,4,7}

¹The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford, UK; ²MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, UK; ³IAVI Human Immunology Laboratory, Imperial College, London, UK; ⁴Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, UK; ⁵Current address: Institut Pasteur du Laos, Vientiane, Laos People's Democratic Republic; ⁶Current address: Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, 6–096 Katz Centre for Health Research, Edmonton, Alberta, Canada; ⁷Clinical Biomanufacturing Facility, University of Oxford, Churchill Hospital, Oxford, UK; ⁸Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; ⁹Okairos, Rome, Italy; ¹⁰CEINGE, Naples, Italy; ¹¹Department of Biochemistry and Medical Biotechnology, University of Naples Federico II, Naples, Italy

FIRST HUMAN TRIAL (PHASE I)

HIVconsv vaccines induced high frequencies of HIV-1-specific T cells

HIVconsv vaccines induced high frequencies of HIV-1-specific T cells

HIVconsv vaccine-elicited T cells were of broad specificities

52

HIVconsv vaccine-elicited T cells were of broad specificities

HIVconsv vaccine-elicited T cells were of broad specificities

HIVconsv vaccine-elicited CD4+ and CD8+ T cells were polyfunctional

HIV-1 vaccine

HIVconsv vaccine-elicited CD4+ and CD8+ T cells were polyfunctional

HIVconsv vaccine-elicited T cells inhibited HIV-1 replication *in vitro*

- Exp design
- virus-inhibition assay (VIA)
- vaccine-induced CD8+ T cells **VS** autologous CD4+ T cells
- Different clade of virus tested: ELI, CH077, CH106, 247Fv2, ZA97012, U455, Bal and Nefmutated IIIB

HIVconsv vaccine-elicited T cells inhibited HIV-1 replication *in vitro*

HIVconsv vaccine-elicited T cells inhibited HIV-1 replication *in vitro*

HIV-1 vaccine

Replicative capacity of HIV-1 isolates in autologous CD4+ cells

Day 13

Both Gag- and Pol-specific CD8+ T-cell frequencies correlated with *in vitro* HIV-1 inhibition

HIV-1 vaccine

Both Gag- and Pol-specific CD8+ T-cell frequencies correlated with *in vitro* HIV-1 inhibition

b All Groups

Summary

- Chimeric immunogen HIVconsv made of consensus clade sequences, which may not be present in natural isolates, elicited T cells that recognized HIV-1-infected cells.
- The CM and DDDCM regimens induced transgene-specific, IFN-γ–producing T cells, which (i) reached unprecedented high median total frequencies of 5.2 k and 5.8 k SFU/106 PBMC, respectively; (ii) included both CD8+ and CD4+ T-cell subpopulations; (iii) were broadly specific; (iv) produced multiple intercellular signaling molecules; (v) proliferated to recall antigens; and (vi) showed efficacy *in vitro* by inhibiting HIV-1 replication in cultured autologous cells.
- Correlation of *ex vivo* IFN-g ELISPOT assay frequencies with virus inhibition.
- Pol specific CD8+ T-cell responses correlated as well as or better than the Gag-specific responses with virus inhibition.

Outlook

- HIVconsv-specific responses were detected in 100% of vaccinees and recognized an average of 8 naturally subdominant HIV-1 epitopes, which originated from conserved regions common to many circulating viruses.
- Some modification of the delivery regimen may be needed.
- Demonstrate protection of humans against HIV-1 infection in conjunction with a vaccine that elicits effective anti-Env antibodies.

Overview: Past HIV-1 vaccine trials

References:

• Review: McMichael & Haynes (2012)

• Original reports: [1] Pitisuttithum et al. J Infect Dis 194:1661-1671 (2006); [2] Buchbinder et al. Lancet 372:1881-1893 (2008); [3] Rerks-Ngarm et al. N Engl J Med 361:2209-2220 (2009)