Recent advances in reactive oxygen species detection methods

Silvia Sorce

Journal Club, 1st April 2014

Outline

- Introduction to ROS biology
- How to detect ROS
- The Neurinox consortium

Definitions (I)

Free Radicals:

 Any species that contains one or more unpaired electrons

Non-Radicals:

 Species that have strong oxidizing potential

- **R₃C** Carbon-centered
- **R**₃**N** ∙ Nitrogen-centered
- **R-O** Oxygen-centered
- **R-S**· Sulfur-centered
- H_2O_2 Hydrogen peroxide $HOCl^-$ Hypochlorous acid O_3 Ozone $1O_2$ Singlet oxygen $ONOO^-$ Peroxynitrite

Term	Definition
Oxidation	Gain in oxygen Loss of hydrogen Loss of electrons
Reduction	Loss of oxygen Gain of hydrogen Gain of electrons
Oxidant	Oxidizes another chemical <u>by taking</u> electrons, hydrogen, or by adding oxygen
Reductant	Reduces another chemical <u>by supplying</u> electrons, hydrogen, or by removing oxygen

ROI: 1 electron reduction products of O₂ en route to the production of water

952 Cell 140, March 19, 2010 ©2010 Elsevier Inc. DOI 10.1016/j.cell.2010.03.008

Historical milestones in ROS biology (I)

Nathan and Cunningham-Bussel, NATURE REVIEWS IMMUNOLOGY, 2013

Historical milestones in ROS biology (II)

de novo

generation

ROS

Exogenous sources of ROS

- Smoke
- Air pollutants
- Ultraviolet radiation
- γ-irradiation
- Several drugs

Endogenous sources of ROS

- NADPH oxidases
- Mitochondria
- ER flavoenzyme ERO1
- Xanthine oxidase
- Lipoxygenases
- Cyclooxygenases
- Cytochrome P450 enzymes
- Flavin-dependent demethylase
- Polyamine and amino acid oxidases
- Nitric oxide synthases
- Free iron or copper ions
- Haem groups
- Metal storage proteins

ER, endoplasmic reticulum; ROS, reactive oxygen species. Sources reviewed in REFS 10–12.

NOX2: the prototype isoform

- \rightarrow NOX2 works like an electron transport chain
- \rightarrow Product of the enzymatic reaction: superoxide \rightarrow dismutated to H₂O₂

NOX family

NOX expression and physiological functions

Oxidative stress

Definition:

old : excessive production of ROS

emerging concept: aberration in redox signaling and control

Direct measurements:

- Electron spin resonance (ESR) spectroscopy

Indirect measurements:

- Using probes which react with oxidants
- Analysing oxidation products e.g. proteins, DNA...

Probes for indirect detection methods

in vitro-ex vivo assays:

<u>absorbance</u>

- Cytochrome C reduction
- NBT

luminescence

- Lucigenin
- Luminol
- L-012
- MCLA

mostly performed using a plate reader:

<u>fluorescence</u>

- DHE
- DCFH-DA
- Amplex red
- DHR123
- "masked" probes

in vivo live imaging:

- Peroxy Caged luciferin (luminescence)
- Lucigenin/luminol (luminescence)
- Qcy-7 (fluorescence)

Absorbance 1: Cytochrome c reduction

SAMPLES: phagocytes > cell lysates/membranes > tissue segments

REAGENTS: buffer composed of (mmol/L): NaCl, 145; KCl, 4.86; NaH₂PO₄, 5.7; CaCl₂, 0.54; MgSO₄, 1.22; glucose, 5.5; deferoxamine mesylate, 0.1; 50 μmol/L of <u>acetylated</u> ferricytochrome c; manganese superoxide dismutase (100 U/mL); catalase (125 U/mL)

Strenghts:

- Easy
- Quite accurate estimates of O₂⁻ in picomolar range

- Not very sensitive \rightarrow good detection only for large amounts *e.g.* phagocytes
- Specificity \rightarrow can be directly reduced by enzymes and other molecules/can be re-oxidized \rightarrow + SOD and catalase
- Only detects extracellular O₂-

Absorbance 2: Nitroblue tetrazolium (NBT)

SAMPLES: intact cells

METHOD: Monoformazan can be detected spectrophotometrically at 550nm.

However, the monoformazan usually precipitates and most methods dissolve the crystals in cells by addition of a solvent such as dimethylsulfoxide and then measure the blue color at 630nm.

Strenghts:

- Very simple \rightarrow diagnosis for CGD
- Intracellular O₂⁻ production

Caveats:

- Specificity \rightarrow can be directly reduced by cellular enzymes, cross-reactivity with NOS
- Not very sensitive \rightarrow good detection only for large amounts *e.g.* phagocytes

Alternative: WST-1 (sulfonated tetrazolium salt) \rightarrow can be reduced by O₂⁻ to a water soluble formazan with low background, moderate sensitivity

Absorbance 2: Nitroblue tetrazolium (NBT) \rightarrow example

- •0.1 uM PMA final
- •1 mg/mL NBT
- •In HBSS, 200 uL volume
- Incubation for 1h
- Centrifuged
- •removed NBT solution

•Suspended pellet in 20 uL isopropanol and 20 uL DMSO

•Read absorbance at 570 nm

- •Only about 2X difference between no cells and 50 000
- •No further reaction after 1 hour?

Chemiluminescence 1: lucigenin

SAMPLES: intact cells > tissue segments > homogenates, purified membrane

REAGENTS: Krebs/HEPES buffer; 5 µm lucigenin

Strenghts:

- Simple, not expensive
- Very sensitive, minimal toxicity
- Selective for O₂⁻ production

- Redox cycling: possible artifact, even when low lucigenin concentration are used
- Extracellular production only

Chemiluminescence 2: luminol

SAMPLES: intact cells > tissue segments

REAGENTS: Krebs/HEPES buffer; 5 μ m lucigenin

Strenghts:

- Simple, not expensive
- Sensitive, minimal toxicity, cell permeable
- Extracellular + Intracellular ROS production

- Needs peroxidase for the reaction to occur
- Not specific: can react with different ROS
- pH-dependent

Chemiluminescence 3: L-012 and MCLA

SAMPLES: in vivo, purified membrane cells

Strenghts:

- Improved version of luminol/lucigenin
- 100 times more sensitive than luminol

Caveats:

- Not specific: can react with different ROS
- Peroxidase-dependent
- Redox cycling

SAMPLES: purified membranes, cells

Strenghts:

- Selective for O_2^- production
- more sensitive than most detection systems

- Extracellular production only
- Subject to autooxidation \rightarrow high background

Fluorescence 1: Hydroethidine/Dihydroethidium (HE/DHE)

SAMPLES: intact cells, tissues in situ and ex vivo, in vivo

Strenghts:

- Cell permeable \rightarrow Intracellular ROS production
- Specific product (2-hydroxyethidium) generated on reation with O₂⁻

- Sensitive to light and oxygen \rightarrow dim light/argon-purged buffers/dark tubes
- Reacts with many ROS
- Oxidized to Ethidium→intercalates with DNA → red fluorescence, similar excitation/emission spectra as 2hydroxyethidium
- Specific products can be detected only by HPLC-based methods

Fluorescence 1: Hydroethidine/Dihydroethidium (HE/DHE) \rightarrow example

ROS levels in SOD1(G93A) spinal cord

Increased levels of O_2^{--} and H_2O_2 are observed

in the spinal cord of SOD1G93A mice

Fluorescence 2: Dichlorofluorescein diacetate (DCFH-DA)

SAMPLES: intact cells, frozen tissue sections

Strenghts:

- Cell permeable \rightarrow Intracellular ROS production
- Highly fluorescent

- Autooxidation, Redox cycling and production of O₂⁻
- Not selective for H₂O₂, Reacts with many ROS
- Reaction with peroxidases

Fluorescence 3: Amplex red

Fluorescent at 587nm

SAMPLES: intact cells

Strenghts:

- Highly fluorescent, low background
- High sensitivity
- Specific for H2O2

- Extracellular H2O2 only, HRP does not penetrate cells
- Reaction with endogenous peroxidases

PLB-985: human myeloid cell line, differentiated in granulocytes Trex-NOX4: HEK cells overexpressing NOX4 only upon tetracycline (TC) exposure

Courtesy of V. Jaquet, University of Geneva

Fluorescence 4: Dihydrorhodamine (DHR) 123

SAMPLES: intact cells

Strenghts:

- Highly fluorescent, intracellular
- Can be used for flow cytometry on whole blood \rightarrow diagnosis of CGD
- Blood specimens as small as 0.1 ml can be used \rightarrow ideal for use in neonates and young children

- Specificity
- Sensitivity

Fluorescence 4: Dihydrorhodamine (DHR) 123 \rightarrow human whole blood assay

Fluorescence 5: probes unmasked by H_2O_2

Benzene-sulfonyl derivatives

- 1. pentafluorobenzenesulfonyl-fluorescein
- 2. Bis(2,4-dinitrobenzenesulfonyl) fluorescein

Strenghts:

- 1. Not dependent on peroxidase
- 2. Selective for O_2^-

Caveats:

- 1. Not specific
- 2. can react with GSH

Aryl boronates derivatives (Chang's group, University of California, Berkeley)

Strenghts:

- Can be trapped inside cells \rightarrow live imaging
- Not dependent on peroxidase

Caveats:

- Reaction is accelerated at higher pH
- Selectivity for H₂O₂ has been questioned
- High background fluorescence

Lippert et al., Acc Chem Res. 2011 Maghzal et al., Free Radic Biol Med. 2012 c

Fluorescence 5: probes unmasked by $H_2O_2 \rightarrow PET$ and FRET approaches

photo-induced electron transfer (PET)-based probe

Albers et al., , J. Am. Chem. Soc., 2006; Abo et al., J. Am. Chem. Soc., 2011; Maghzal et al., Free Radic Biol Med. 2012

Probes for indirect detection methods

in vitro-ex vivo assays:

<u>absorbance</u>

- Cytochrome C reduction
- NBT

luminescence

- Lucigenin
- Luminol
- L-012
- MCLA

mostly performed using a plate reader:

<u>fluorescence</u>

- DHE
- DCFH-DA
- Amplex red
- DHR123
- "masked" probes

in vivo live imaging:

- Peroxy Caged luciferin (luminescence)
- Lucigenin/luminol (luminescence)
- Qcy-7 (fluorescence)

In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter

Genevieve C. Van de Bittner^a, Elena A. Dubikovskaya^a, Carolyn R. Bertozzi^{a,b,c,d}, and Christopher J. Chang^{a,b,1}

^aDepartment of Chemistry, ^bHoward Hughes Medical Institute, and ^cDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; and ^dThe Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Edited by Doug Neckers, Spectra Group Ltd., Millbury, OH, and accepted by the Editorial Board October 15, 2010 (received for review August 29, 2010)

In vivo live luminescence 1: Peroxy Caged luciferin 1 (I)

Van de Bittner et al., PNAS, 2011

In vivo live luminescence 1: Peroxy Caged luciferin 1 (II)

Unshaven FVB-luc+ mice that ubiquitously express firefly luciferase (CAG promoter)

- Available from Jackson Lab
- Bioluminesence is detected in heart, spleen, muscle, pancreas, skin, thymus and bone marrow
- luciferase expression is generally greater in males than females

Van de Bittner et al., PNAS, 2011

- androgen-sensitive prostate cancer cells (LNCaP)

- In dissociated cell culture, LNCaPs respond to testosterone by increasing their proliferation rate and elevating their ROS production

- ...and In vivo ? → LNCaP-luc+ tumor xenograft in immunodeficient SCID hairless outbred mice (SHO), i.p. injection of 3 × 10⁶ LNCaP-luc cells (100 µL of 1:1 PBS:Matrigel) in adult SHO mice Incubation: 4 weeks

Fig. 5. Bioluminescent signal from SHO mice with LNCaP-luc tumors. (A) Ratios of total photon fluxes for mice injected with PCL-1 (i.p., 0.5 μ mol in 50 μ L of 1:1 DMSO:PBS) on day 1 and PCL-1 (i.p., 0.5 μ mol in 50 μ L of 1:1 DMSO:PBS) plus the vehicle (i.p., 50 μ L of sesame oil), testosterone propionate (i.p., 3 mg in 50 μ L of sesame oil) and NAC (i.p., 0.2 mg in 100 μ L of PBS) on day 2. Sesame oil and testosterone were injected 1.5 h prior to PCL-1 on day 2, and NAC was injected immediately prior to PCL-1 on day 2. Statistical analyses were performed with a two-tailed Student's t test. ** *P* < 0.005 (*n* = 5), and error bars are ±SD. Representative images from one mouse in each experiment are shown (*B*-*D*).

In Vivo Imaging of Inflammatory Phagocytes

Jen-Chieh Tseng^{1,*} and Andrew L. Kung^{1,2,3} ¹Lurie Family Imaging Center ²Department of Pediatric Oncology Dana-Farber Cancer Institute, Boston, MA 02215, USA ³Present address: Columbia University Medical Center, New York, NY 10032, USA *Correspondence: jen-chieh_tseng@dfci.harvard.edu http://dx.doi.org/10.1016/j.chembiol.2012.08.007

In vivo live luminescence 2: lucigenin and luminol (I)

Long-term inflammation model: s.c. implant of estrogen-releasing pellets onto NCr nude mice → Imaging <u>4 months after pellet</u> implant with lucigenin (25 mg/kg i.p.) or luminol (100 mg/kg i.p.)

<u>Short-term inflammation model</u>: surgical lacerations to the skin

→ Imaging <u>4 days after</u> surgery during healing phase with lucigenin (25 mg/kg i.p.) or luminol (100 mg/kg i.p.)

n = 5P < 0.0001Lucigenin Luminol

Luminol bioluminescence \rightarrow acute phase of inflammation Lucigenin bioluminescence \rightarrow late phases of inflammation

luminescence from these different substrates are mediated through distinct cell types and mechanisms <u>Short-term inflammation model</u>: s.c. injection of 50 µg PMA

→ Longitudinal imaging starting <u>3 hours</u> <u>after</u> surgery for 4 days with lucigenin (25 mg/kg i.p.) or luminol (100 mg/kg i.p.)

In vivo live luminescence 2: lucigenin and luminol (II)

Short-term inflammation model: surgical lacerations to the skin

→ Imaging $\frac{4 \text{ days after surgery during healing phase with lucigenin}}{(25 mg/kg i.p.) or luminol (100 mg/kg i.p.)}$

In vivo live luminescence 2: lucigenin and luminol (III)

Long-term inflammation model: s.c. implant of estrogen-releasing pellets onto NCr nude mice

lucigenin > luminol

H&E staining revealed massive tissue-infiltrating macrophages and granuloma formation (arrows), with very few neutrophils.

<u>Short-term inflammation model</u>: s.c. injection of 50 μg PMA

Luminol > lucigenin (acute phase) Lucigenin> luminol (late phase)

Twelve hours after injection \rightarrow massive neutrophil infiltration (arrowheads) Four days after injection \rightarrow infiltration of macrophages (arrows)

luminol bioluminescence \rightarrow neutrophils in the acute phase lucigenin bioluminescence \rightarrow macrophages in the chronic phase of inflammation

!!!!! redox-cycling issue: <u>lower oxygen pressure in tissue (10 mm Hg, compared with 150 mm Hg in the atmosphere)</u> and higher affinity to endogenous superoxide anion (O2-, with a negative charge opposite to LC+), <u>make it unlikely to occur in phagocytes during in vivo imaging</u>

Tseng and Kung, Chemistry and Biology, 2012

ARTICLE

pubs.acs.org/JACS

A Unique Paradigm for a Turn-ON Near-Infrared Cyanine-Based Probe: Noninvasive Intravital Optical Imaging of Hydrogen Peroxide

Naama Karton-Lifshin,[†] Ehud Segal,[‡] Liora Omer,[‡] Moshe Portnoy,[†] Ronit Satchi-Fainaro,^{*,‡} and Doron Shabat^{*,†}

⁺School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences and [‡]Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

Supporting Information

In vivo live fluorescence: QCy7

Water-soluble QCy7: Cy-7 + phenyl boronic acid→ near infrared fluorescence upon reaction with H2O2

the intensity of fluorescence depends on H2O2 concentration

Control

(Vehicle)

Probe 4 (1 mM)

Probe 4 (1 mM)+ H₂0₂ (1 μM)

In vivo imaging of <u>exogenous</u> hydrogen peroxide. Shaved Balb/c mice. CRI Maestro image. Excitation at 595 nm, emission cutoff filter of 635 nm.

In vivo imaging of <u>endogenous</u> hydrogen peroxide 6h post-i.p. LPS-induced inflammatory response.

Karton-Lifshin et al., J. Am. Chem. Soc., 2011

Genetically encoded biosensors

- roGFPs: surface-exposed residues on the Aequorea victoria green fluorescent protein (GFP) were substituted with cysteines in appropriate positions to form disulfide bonds → ratiomeric H₂O₂ determinationn
 Can be induced by other oxidants, slow reaction Improved by coupling with glutaredoxins (Grx1roGFP) or peroxidases (e.g. Orp1-roGFP)
 - 2. Hyper: insertion of circularly permuted yellow fluorescent protein (cpYFP) into OxyR,a bacterial A sensor of H2O2: disulfide bond formation upon oxidation and conformational change → fluorescence
 - → ratiometric, highly selective for H2O2
 ! Reversible reaction, depends on glutathione system, pH-sensitive
 - **3.** cpYFP: discovered by serendipity as selective sensor for $O_2^- \rightarrow$ mechanism not understood
 - \rightarrow can be targeted to cellular compartments
 - \rightarrow Need transfection

Bhaskar et al., PLoS Pathog 10(1): e1003902.

Table 1. The ideal fluorescent ROS detecting probedoes not exist!

Characteristic	Rationale
Chemoselectivity	ROS-type chemoselectivity and no cross-reactivity with other ROS to avoid disambiguity of the type of ROS involved in the reaction; Based on the innate chemical nature of the ROS type
Membrane pearmibility	Good membrane permeability but little diffusion of the product to allow for localization of the reaction
Sensitivity	Good sensitivity (nano-micro range of ROS concentration) to detect signaling concentration of the ROS
Defined spectral peaks	Narrow peaks of excitation and emission spectra to allow simultaneous detection of more than one probe
Photostability	Little photooxidation and photobleaching to facilitate imaging on the microscope
Post-fixation retention	Retention after fixation to allow for simultaneous detection of the dye and the antibody for colocalization studies
Linear response	Linear relationship between the fluorescent signal to the ROS concentration to allow for quantitative studies of the ROS generation
Signal-to-noise ratio	Low fluorescence of the ROS-unbound form to avoid false signal from the accumulation of the probe in the cell
Bioorthogonality	Bioorthogonality and nontoxicity of the probe not to interfere with other biological processes
In vivo capability	Possibility of the probe usage in the <i>in vivo</i> studies to permit of the redox reaction studies in the animal models
Two-photon microscopy	Compatibility with two-photon microscopy to allow for deep tissue penetration imaging and prolonged observation without specimen damage

- Understand underlying principles involved and how these may be affected by potential biological changes
- Use a combination of approaches
- Use appropriate controls and Interpret data with care, recognizing the limitations of the assay

Biomarkers of Oxidative Stress Study (http://www.niehs.nih.gov/research/resources/databases/bosstudy/index.cfm)

Assays that measure oxidation of lipids, proteins, DNA and a group of antioxidants.

Lipid peroxidation assays: lipid hydroperoxides, TBARS, MDA, isoprostanes, various HETEs.

Protein oxidation assays: protein carbonyls, various tyrosine products, methionine sulfoxidation.

DNA oxidation assays: 8-OH-dG, oxidation changes by the Comet assay, M₁G.

Antioxidants: Ascorbic acid, tocopherols, GSH, GSSG, uric acid, TAC (total antioxidant capacity)

http://www.neurinox.eu/

Veuring	x	EUROPEAN COMMISSION			
Latest Public	ations	Neurinox Approach News and events			
Home		Welcome to the official website of the NEURINOX			
About NEURINOX	+	project! NEURINOX aims at identifying novel therapeutic targets for neuroinflammatory diseases, by focusing on NADPH oxidases (NOX). NOX enzymes catalyse the formation of reactive oxygen species (ROS) and are key regulators of neuroinflammation. Establishment of chronic neuroinflammation is characterised by either increased or decreased			
Patient information	+				
Educational material	+				
Opportunities for Industry partnerships		NOX activity. The NEURINOX project aims at elucidating the links between neuroinflammation, NOX enzyme activity and neurodegenerative diseases (ND). It aims at validating NOX as therapeutic targets using animal models of			
Publications	+	neuroinflammation, human samples, prospective clinical studies and, in case of success of preclinical evaluation of NOX inhibitors in			
Project documentation		models of amyotrophic lateral sclerosis (ALS), an early clinical trial with ALS patients. With a total budget of 15.4 M€ and a funding support of 11.4 M€ for			
News and events					
Contact		5 years from the European Union's Seventh Framework Programme (FP7) for Research and Technology Development, NEURINOX is coordinated by University of Geneva and includes several SMEs, internationally renowned research groups and clinical institutions with extensive experience in NOX research an neurodegenerative diseases.			

to develop novel therapeutic approaches for the treatment of inflammatory neurodegenerative diseases focusing on NOX enzymes

NEURINOX research activities include:

- studies of NOX activity in <u>animal models</u> and in human <u>patient samples</u>
- development and validation of the effect of <u>NOX regulating drugs</u> (small molecules) in animal models
- a <u>phase I-II clinical trial</u> with a NOX regulating drug to determine safety and efficacy on a small population of ALS patients.

NeuriNOX consortium: 13 members

Acknowledgements

Ghassan Maghzal Magda Lam

Thank you for your attention!

Questions/comments?