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Phenotype-based versus target-based drug discovery
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Target deconvolution strategies

Target deconvolution:

The retrospective identification of the molecular targets that underlie the observed phenotypic responses

knowledge of the molecular targets:

» will help to understand the (patho)
mechanism(s) of the disease.

« will also aid rational drug design
and allow efficient Structure-
Activity Relationship (SAR) studies
in a chemical optimisation strategies
programme, thereby developing
target-specific assays.

Target
deconvolution

In addition, the aspects related to
target-specific toxicity and side effects
can be addressed, reducing later-
stage "attrition" early on.”




Affinity-chromatography-based methods
for target deconvolution

The small molecule ligand (L) is tethered to a matrix and incubated with a protein extract that includes the target protein (T).
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Solid-phase elution: ligand-bound proteins are eluted using buffers that disrupt intermolecular interactions.

The protein pattern that is obtained with an inactive ligand analogue (A) is also determined (the ‘comparison variant’), and the
two outcomes are compared.

Competition variant’, protein elution is accomplished by an excess of free ligand.

Serial affinity chromatography, the matrix is incubated with protein extract which is then incubated with fresh matrix. Most of the
proteins that bind specifically are captured by the first matrix, whereas the amounts of nonspecific binding proteins are similar
for both matrices.



Labeling strategies
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Expression cloning techniques

Proteins can be expressed using cloning vectors containing cDNA library,
and these proteins exposed to small molecules for affinity selection
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Phage Display technology for target deconvolution
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A phage population displaying potential target proteins on their surface is exposed to an immobilized small molecule. After
affinity selection, the eluted phage population is amplified and subjected to further rounds of affinity enrichment. At the end of the
procedure, the monoclonal phage population can be analysed for target identification.



MRNA display technology for target deconvolution
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An mRNA-displayed protein library is created in vitro and exposed to an immobilized small molecule. After affinity selection, cDNA
target molecules are amplified by PCR and used in the next selection round to generate a new library that is enriched for drug-
binding proteins. Several rounds of reiteration lead to the identification of target molecules. ds, double stranded; ss, single stranded



Three-hybrid systems for target deconvolution
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The three-hybrid system comprises one component that consists of a DNA-binding domain fused to a ligand binding domain
(DHFR), one component that consists of a ligand molecule (MTX) linked to a small molecule, and one component that consists
of a transcriptional activation domain fused to a protein from a cDNA library (which might be a target protein).

The binding of the small molecule to its target protein results in the interaction of the three hybrid components, which form a
trimeric complex. This complex then activates the expression of a reporter gene, providing a measure of the interaction.



Microarray technologies for target deconvolution
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Protein microarrays.

Proteins are immobilized on a glass slide through a glutathione S-transferase (GST) tag and exposed to a labelled small
molecule (in this example, a biotinylated form of the small molecule). Bound target proteins are detected by adding a

fluorescently labelled streptavidin (S) conjugate, and then identified by their positions on the array. As a ‘loading’ control, the
array is probed with GST-specific antibodies.



Label-free techniques for target deconvolution
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Limited proteolysis techniques such as DARTS (drug-assisted responsive target stability) and pulse proteolysis utilize stability
of protein-ligand complex under proteolytic condition. Ligand bound proteins are more resistant to proteolysis in the presence of
denaturant (pulse-proteolysis) or without denaturant (DARTS), and non-binding proteins are hydrolyzed to small peptides and
amino acids. All proteolysis resistant proteins can be analyzed by SDS-PAGE and identified by mass spectrometry



“The efficacy of therapeutics is dependent on a drug binding to its cognate
target. Optimization of target engagement by drugs in cells is often
challenging, because drug binding cannot be monitored inside cells.”

Monitoring Drug Target Engagement in
Cells and Tissues Using the Cellular
Thermal Shift Assay

Daniel Martinez Molina,** Rozbeh ]afari,** Marina Ignatushchenko,'* Takahiro Seki,?
E. Andreas Larsson,®> Chen Dan,®> Lekshmy Sreekumar,? Yihai Cao,%* Pir Nordlund*>t

5JULlY 2013 WVOL 341 SCIENCE www.sciencemag.org



Cellular thermal shift assay (CETSA)

Based on the biophysical principle of ligand-induced thermal stabilization of target proteins, as
described by Koshland (1958) and Linderstrom-Lang and Schellman (1959).

Few crucial components:

* a heating step in which target proteins denature and precipitate unless stabilized through ligand
binding and,

« a step in which proteins that remain stable during heating are distinguished from proteins that
denature and precipitate

A thermal shift assay quantifies the change in thermal denaturation temperature of an isolated protein
under varying conditions (pH, salts, additives, drugs, drug leads, oxidation/reduction, or mutations).

Thermal shifts assays (for example fluorescence or light
scattering based techniques) are widely wused for
characterization of ligand binding in structural biology and drug
screening in a broad range of affinities.

These methods have been applied only to purified proteins.
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CETSA mealting curves

treatment of cells with a compound of interest:
critical incubation time

heating to denature and precipitate proteins

cell lysis

the separation of cell debris and aggregates from
the soluble protein fraction, by centrifugation or
filtration of the samples to remove denatured and
precipitated material

Whereas unbound proteins denature and
precipitate at elevated temperatures, ligand-bound
proteins remain in solution.
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CETSA melt curves in cell lysate
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Administer drug in dose range
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The response here is typically reached at higher drug concentrations, unlike traditional dose-response
experiments in which half-saturation points are related to affinities.

This procedure yields a characteristic fingerprint of the target engagement along the drug
concentration axis. This isothermal dose-response fingerprint was used to estimate relative differences in
drug concentration required to establish a similar extent of target engagement.



Correlation of CETSA with TSA by DSLS on purified proteins
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The drop in signal in the centrifugation
experiments follows the increase of
Stargazer signal (which monitors the
light scattering of the aggregates
formed upon precipitation).
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Static light scattering (DSLS) allows monitoring temperature-dependent protein aggregation. Since proteins aggregate upon
denaturation the detected species size will go up.

Stargazer-2 measures SLS while heating samples. This is label-free and independent of specific residues in the protein or buffer

composition. The only requirement is that the protein actually aggregates/fibrillates after denaturation and that the protein of
interest has been purified.



>

Relative band intensity, %

Monitoring of antifolate drug transport and activation
In intact cells (1)
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CETSA curves in intact cells versus lysate for DHFR (A) and TS (B) with methotrexate and raltitrexed respectively.

(C) ITDRFCETSA at 52°C in intact cells versus lysate for TS using raltitrexed to assess the relative binding in cells



Cell count and cell membrane integrity

Cell count and dye exclusion by four different cell lines after heating for 3 minutes to different temperatures.

5.
7.0x10 .i _____ I--:,..i - 150 -e- Cell count K562
6.0x105- %g; :;::F:::" DRSS TR E -o- Dye exclusion K562
Ny o -=- Cell count HeLa
€ 50x105{ &— -100 g -=- Dye exclusion HeLa
w g -=- Cell count A549
g 4.0x10° o -+ Dye exclusion A549
-50 =
-+- Cell count A375
3.0x10°5- 2 i
-+ Dye exclusion A375
2.0X 1 05 T { | T T T T 0
37 55 60 65 70

Temperature °C



Monitoring of antifolate drug transport and activation
In intact cells (2)
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CETSA can monitor processes involved in drug resistance



Monitoring of methionine aminopeptidase-2 (MetAP-2) inhibitor TNP-470
target engagement in tissue samples from mice.
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(A) CETSA curves of MetAP2 in mouse liver lysates from untreated mice and mice treated with TNP-470 at
20 mg per kilogram of body weight.
(B) ITDRFgrspat 72°C of MetAP2 in liver and kidney at six different TNP-470 dosage levels.
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CETSA for validation of clinical drug target
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Two procedures for detecting the stabilized protein in the
soluble fraction of the samples.

1) Sample workup and detection using quantitative
western blotting;
1) Direct detection in solution approach relying on the

induced proximity of two target-directed antibodies
upon binding to soluble protein (increased throughput)

Both approaches can be completed in a day.

The latter can be achieved either through separation of the
soluble material, e.g., by centrifugation or filtration of the
samples to remove denatured and precipitated material, or
by using a detection method capable of distinguishing
between these entities (e.g., one based on antibodies
recognizing only the folded protein).
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CETSA: WB and direct in solution detection
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CETSA: the screen format assay procedure
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CETSA advantages and limitations

Ligand-induced stabilization is investigated at target level, in complex systems

Preservation of target subcellular localization, post translational modification, interaction with other
cellular partners

Direct measure
Easy, use of common laboratory techniques and standard equipment
Useful for targets that are difficult to express and purify in a biologically active and relevant form.

Few false-positive

An intrinsic limitation of this assay is that not all proteins aggregate upon unfolding but might instead
populate highly soluble, relatively compact molten-globule (like) conformations.

In addition, it is possible that proteins will co-precipitate with their less stable protein interaction partners
and therefore show lower apparent stability than their actual thermodynamic stability.

False negative

It lacks the potential for detecting unexpected targets
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Tracking cancer drugs in living cells
by thermal profiling of the proteome

Mikhail M. Savitski,'*t Friedrich B. M. Reinhard,'f Holger Franken,' Thilo Werner,!
Maria Filth Savitski,! Dirk Eberhard,! Daniel Martinez Molina,? Rozbeh Jafari,>
Rebecca Bakszt Dovega,” Susan Klaeger,”>* Bernhard Kuster,*>* Pir Nordlund,?®
Marcus Bantscheff,'* Gerard Drewes'*

SCIENCE sciencemag.org 3 OCTOBER 2014 + VOL 346 ISSUE 6205 1255784-1

“They monitored the unfolding or “melting” of over 7000 human proteins and measured how small-molecule
binding changes individual melting profiles. As a proof of principle, over 50 targets were identified for an
inhibitor known to bind a broad spectrum of kinases.

Two cancer drugs, vemurafib and Alectinib, are known to have a side effect of photosensitivity. The thermal
profiling approach identified drug-protein interactions responsible for these side effects.”

NATURE PROTOCOLS | VOL.10 NO.10 | 2015 | 1567



Thermal proteome profile (TPP) by combining CETSA with
guantitative mass spectrometry
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« Monitor the thermal stability of proteins at 10 different temperatures by labeling the peptides with neutron-
encoded isobaric mass tagging reagents (TMT10) in conjunction with high- resolution MS.

* The reporter ion intensities in MS/MS spectra are used to fit a curve and calculate melting curves for a
large proportion of expressed soluble proteins in a single (LC-MS)/MS experiment.



TMT labeling
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Protein Identification

The combined M-F-N-R regions of the tags have the same total molecular weights and structure so that during
chromatographic separation and in single MS mode, molecules labeled with different tags are indistinguishable.

The tags are then cleaved from the peptides by collision-induced dissociation (CID) during MS/MS

After CID, the peptide fragment ions are analyzed for sequence assignment and the isobaric tags are quantitated,
resulting in concurrent peptide identification and relative quantitation.



Thermal proteome profile (TPP) of K562 cells

Proteins exhibiting a transient concentration
increase with temperature are annotated to
be part of organelles or large protein
assemblies.

Different organelles |

Large protein assemblies |

Reproducibility of thermal proteome
profiles and direct comparison of proteomes
from intact cells and cell-extract experiments.
Most proteins showed greater thermal stability
(higher Tm values) in cell extract as compared
with intact cells.

A set of 440 ATP-binding proteins show a trend
toward increased stability in intact cells as
compared with cell extract.

A soluble fraction relative to 37°C in intact cells at soluble fraction relative to 40°C in cell extract at
41° 44° 47° 50° 53° 56° 59° 63" 67° 43° 46° 49° 52° 55° 58° B1° 64° 67°
[
£
Q
°
Gl ——
H 150
65 L~ 85 65
© eof ~ Le © 60f
E E E
- - -
o~ 55 o 55 o 551
© ] ]
g 50f 850 g0
5} p )
2 45 5 45 3 451
- P o o
4l 7 400~ 407
40 45 50 55 B0 85 40 45 50 55 60 65 40 45 50 55 60 65
intact cells 1, T_(°C) cell extract 1, T_(°C) intactcells 2, T_(°C)
c — annotated ATP binders (446)
0.34 — all other proteins {2088)
202 ATP
£ \ \% binders
] / \
- // \\\
0.0 T T T T T T — T ——,
40 50 60 7040 50 60 -10 0 10
intact cells T_ (°C) cell extract T_(°C) intact cells T_ - cell extract T_ (°C)



Potential of thermal proteome profiling for the large-scale analysis of proteome-ligand
interactions, including endogenous ligands such as cofactors or metabolites
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p53 with two cognate duplex-DNA oligonucleotides (PG1; red, and PG2; blue) added to A549
cell extract containing wild-type p53 and HT-29 cells containing the p53 R273H mutant.

p53 is a global transcription regulator for stress and when wild-type p53 was exposed to its cognate
effector DNAs it was stabilized, while the p53 R273H mutant, known to not bind these effector

sequences, was not stabilized.



Monitoring the drug effects on thermal proteome profile (TPP)

Study of two structurally divergent promiscuous kinase inhibitors with a known spectrum of targets:
staurosporine and GSK3182571 to investigate the reliability of thermal proteome profiling
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Staurosporine treatment of cell extract yields reproducible thermal shifts, allowing robust target identification.
Cell extract was treated with vehicle or staurosporine. Both experiments were performed as two independent replicates. A flat
slope of the melting curve relates to lower melting point reproducibility. Proteins with an absolute slope below 0.06 are plotted

in gray. The histogram shows the distribution of proteins versus slope values. Of all proteins, 92% vyielded curves with
sufficiently large slopes.



Differential profiling of drug effects on the thermal proteome profile
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(D) Examples of melting curves for PKN1, FECH, AURKA, and SLK with and without staurosporine treatment.
(E) The catalytic subunit of PKA is stabilized by staurosporine, whereas the regulatory subunit is destabilized. Addition of cAMP
followed by Western blot detection revealed destabilization of the catalytic subunit and stabilization of the regulatory subunit.



Thermal proteome profiling: drug concentration series

To infer the concentration of the ligand at which 50% of the total stabilizing effect has been
observed (EC50), in order to rank the potency of the different protein targets
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The selection of the temperature is the most crucial parameter. TPP-CCR experiments are typically conducted
slightly above the melting temperature of the protein(s) of interest such that the protein will just have largely
disappeared in the absence of the stabilizing compound, but it is easily detectable if the compound is added.



Assessment of ligand affinity requires ITDR measurements
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Assessment of ligand affinity requires ITDR measurements.
Good agreement between GSK3182571 pECS50 values determined by means of ITDR, with pIC50 values determined with
kinobeads. (Top) Proteins stabilized by GSK3182571 treatment. (Bottom) Proteins destabilized by GSK3182571 treatment.



Identification of off-targets of drug compounds
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Vemurafenib is a B-Raf enzyme inhibitor
Side effects: photosensitivity  and
increased levels of protoporphyrins.

Alectinib is a ALK kinase inhibitor
Side effects: photosensitivity and
increased levels of protoporphyrins.

The clinical kinase drugs vemurafenib and alectinib induce Tm shifts in the heme biosynthesis enzyme FECH.

(A) ITDR profiling was performed at 55°C with vemurafenib-treated K562 cells and showed concentration-dependent thermal
stabilization of FECH and BRAF.

(B) ITDR performed at 55°C with K562 cells treated with vemurafenib, alectinib, or crizotinib over a range of concentrations.
Alectinib displays a more potent effect on FECH as compared with that by vemurafenib, whereas crizotinib, a drug not known to
cause photosensitivity, has no effect.



Identification of downstream effector proteins of drug compounds

comparison of Tm shifts in cell extract, where ligand binding but no downstream effects occur, with Tm shifts in intact
cells, where active signaling takes place, might reveal effector proteins downstream of the target
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Treatment of K562 cells with dasatinib induces Tm shifts for downstream effector proteins in the BCR-ABL pathway.

(A) Cell-wide assessment of Tm shifts induced by dasatinib (0.5 and 5 mM) in K562 cells. Four proteins showing significant
melting point differences both in the 0.5 and 5 mM dasatinib data sets are marked in red.

(B) Effect of dasatinib on the melting curves for the effector protein CRKL, determined in two biological replicates in intact cells

(top) and cell extracts (bottom).



Identification of downstream effector proteins of drug compounds
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CRKL intact K562 cells versus Jurkat cells
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(C) The melting curve for CRKL in Jurkat cells closely matches the curve obtained in dasatinib-treated K562 cells (top). The
ABL1 protein in Jurkat cells is much more thermostable compared with the BCR-ABL fusion protein in K562 cells.



« The thermal proteome profile of a human cell can provide a general view of the
proteomic state, or proteotype and identification of:

» bound ligands such as other proteins, cofactors, metabolites, or drugs
» posttranslational modifications
» fusion proteins, splice variants

Which are typically undersampled and therefore not comprehensively detected in MS-based
proteomics.

« Low amount of cell material required thus applicable to primary cells and tissues
» beneficial to reduce late-stage failure of compounds in clinical development either

because of a lack of target engagement and therefore efficacy, or because of adverse
effects caused by drug interaction with unexpected targets that mediate toxic effects

» The future scope and applicability of thermal proteome profiling will substantially benefit
from continued advances in the sensitivity and accuracy of MS-based proteomics.

» Future developments should include the development of protocols for membrane proteins
and the application to tissues from animal studies or clinical biopsies.
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Thank you for your attention!



