

3D cell culture through magnetic levitation

21. October 2014

Technical Journal Club

Kristin Fritsch

3D cell culture – Why?

- Cells in tissues are in a three-dimensional environment having characteristic biophysical and biomechanical signals (e.g. migration, adhesion, proliferation and gene expression)
- 3-D cell culture more accurately simulates normal cell morphology, proliferation, differentiation and migrations, as compared to 2-D cell culture
- 3-D culture systems can be used to study disease models by cellular modeling different disease states
- 3-D culture systems can be used to study the effect of drug dosages, drug screening for toxicity and efficacy
- 3-D cell culture has direct applications in tissue engineering and regenerative medicine

Generalized Components of a 3D Tissue Model

Scaffolds

	Materials	Advantages
Natural	Silk, collagen, gelatin, fibrinogen, hyaluronic acid, alginate	BiodegradableEasily availableBioactive, interact with cells
Synthetic	PEG, PGA, PMMA, PLGA	 Facilitate restoration of structure of damaged tissues Inert Long shelf-life Easily tailored for desired porosity and degradation time Predictable and reproducible mechanical and physical properties

magnetic nanoparticle (Nanoshuttle)

2D-culture

Souza et.al., Nature Nanotech 2010

cell-adhesive
peptide sequences
(bacteriophage or
Polylysine)
+
magnetic iron oxide
+
gold nanoparticles

> self-assemble into hydrogels

Haisler et.al., Nature 2013

Haisler et.al., Nature 2013

http://www.n3dbio.com/about/our-mission/

Haisler et.al., Nature 2013

Comparison of three-dimensional cell growth with standard two-dimensional tissue culture

Shape control of magnetically levitated culture

Applications

	Name	Animal	Туре
Cell lines	HEK293	Human	Embryonic kidney
	MDA-231	Human	Mammary epithelial
	MCF-10A	Human	Mammary epithelial
	LNCaP	Human	Prostate epithelial
	A549	Human	Alveolar epithelial
	HepG2	Human	Hepatocyte
	3T3-L1	Mouse	Fibroblast ¹⁸
	bEnd.3	Mouse	Brain endothelial ¹⁸
	H-4-II-E	Rat	Hepatoma
	U251-MG	Human	Glioblastoma ^{13,19}
Primary cells		Human	Astrocyte ^{13,19}
		Human	Pulmonary endothelial ¹⁷
		Human	Type II alveolar epithelial
		Human	Bronchial epithelial ¹⁷
		Human	Tracheal smooth muscle ¹⁷
		Human	Pulmonary fibroblasts ¹⁷
		Human	Umbilical vein endothelial
		Human	Chondrocytes
		Human	Aortic vascular smooth muscle ²²
		Porcine	Aortic valvular interstitial
		Porcine	Aortic valvular endothelial
Stem cells		Human	Neural stem cells ¹³
		Human	Mesenchymal stem cells
		Human	Dental pulp stem cells
		Human	Adipose stem cells ¹⁸

- > cell lines, stem cells and primary cells
- different biochemical or environmental conditions
- scalable in size (96-well plates, 6-well plates or Petri dishes)
- Analysis by common biological research techniques (WB, IHC)

Advantages

- Not time consuming (MLM takes about 16 h to form 3D cultures)
- No artificial protein substrate (e.g. synthetic polymer scaffolds) needed
- no specialized media required
- No extensive fabrication
- magnetic nanoparticles have been shown to not affect cell proliferation and metabolism or induce an inflammatory response

→ MLM is a simpler tool for creating representative 3D cell culture environments compared with other methods

TISSUE ENGINEERING: Part C Volume 19, Number 5, 2013 © Mary Ann Liebert, Inc.

DOI: 10.1089/ten.tec.2012.0198

Adipose Tissue Engineering in Three-Dimensional Levitation Tissue Culture System Based on Magnetic Nanoparticles

Alexes C. Daquinag, PhD,¹ Glauco R. Souza, PhD,² and Mikhail G. Kolonin, PhD¹

tissue culture model simulating the complex intercellular interactions of white adipose tissue (WAT) components

white adipose tissue (WAT)

Adipocyte-depleted stromal vascular fraction (SVF)

magnetic levitation system for adipocyte culture

Adipogenesis induction

3T3-L1 preadipocytes (levitated for 1 day)

+

Adipogenenic differentiation medium for 72h

(0.5mM isobutylmethyxanthine, 1 mM dexamethasone, 0.2mM indomethacin, and 1.7 mM insulin in DMEM/10% FBS (v/v))

Replacement of medium

(with DMEM/10% FBS containing 1.7 mM insulin)

analysis day 45

Preadipocytes and endothelial cells cooperate in 3D co-culture

Vascularization in adipospheres formed by primary WAT cells

SVF of mouse _____ Magnetic ____ Angiogenesis ____ WAT visceral WAT levitation induction

perivascular localization of ASC

Cell composition, organization, and proliferation in primary adipospheres

Adipogenesis in adipospheres made from primary WAT cells

summary

- 3T3-L1 preadipocytes remain viable in spheroids for a long period of time, while in 2D culture, they lose adherence and die after reaching confluence
- adipogenesis induction in efficiently formed large lipid droplets
- Adipocyte-depleted stromal vascular fraction (SVF) of mouse WAT cultured in 3D underwent assembly into organoids with vascular-like structures containing luminal endothelial and perivascular stromal cell layers
- Adipospheres made from primary WAT cells displayed robust proliferation and complex hierarchical organization
- Adiposphere-based coculture of preadipocytes with murine endothelial cells led to a vascular-like network assembly
- Method provides WAT modeling ex vivo and new platform for functional screens to identify molecules bioactive toward individual adipose cell populations
- can be adopted for WAT transplantation applications and aid other approaches to WAT-based cell therapy

Three-Dimensional *In Vitro* Co-Culture Model of Breast Tumor using Magnetic Levitation

Hamsa Jaganathan¹*, Jacob Gage²*, Fransisca Leonard¹*, Srimeenakshi Srinivasan¹, Glauco R. Souza², Bhuvanesh Dave² & Biana Godin¹

¹Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 USA, ²n3D Biosiences Inc, Houston, TX, 77030 USA, ³Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX 77030 USA.

Nature, October 2014

Aim

in vitro model to mimic heterogeneous breast tumors without the use of a scaffold while allowing for cell-cell and tumor-fibroblast interactions

tumour heterogeneity

breast tumor stroma consists of:

- fibroblasts
- adipocytes
- endothelial cells
- inflammatory cells with different enzymes and growth factors

formation of 3D in vitro breast tumors using a co-culture of breast cancer and fibroblast cells

formation of 3D in vitro breast tumors using a co-culture of breast cancer and fibroblast cells

Comparison of 2D co-culture with the 3D in vitro breast tumor model

Comparison of 2D co-culture with the 3D in vitro breast tumor model

→ 3D in vitro culture shows clear tumor tissue-like organization

3D in vitro tumors grown with primary fibroblasts

CAF = primary cancer breast tumor associated fibroblasts

→ Hs578bst and CAF grow in sync with the cancer cells

Characterization of in vitro 3D co-cultures

in vivo

- fibroblasts at the tumor edge is higher than in the core, which corresponds to the fibrotic capsule phenomenon observed in vivo
- 3D in vitro tumors expressed different levels of common ECM proteins

higher concentration of fibronectin in 3D than 2D

F = fibroblasts (293T)

B = breast cancer cells (SUM159)

evidence that co-culture of breast cancer and fibroblasts cells can produce an ECM matrix without a scaffold

Penetration of TRITC-tagged dextran

→ Better penetration of dextran through low density tumors/ tumors with less fibroblast cells than high density tumors

Distribution and therapeutic efficacy of doxorubicin and Doxil on 3D in vitro tumors

→ Doxorubicin and Doxil significantly affects viability in 3D/2D systems

Effect of doxorubicin treatment on 3D in vitro tumors

Effect of doxorubicin treatment on 3D in vitro tumors

decrease of tumor area and density after doxorubicin treatment

summary

- form large-sized breast tumor within 24h

 formation of heterogeneous 3D in vitro breast tumors at various sizes, densities and compositions by controlling the number and type of cells

- mimic the in vivo tumor microenvironment

decrease of tumor area and density after drug treatment

→ Method provides a 3D in vitro brest tumor model to test drug efficiency

Progression of in vitro Cell-Based Models

Thanks for your attention

