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PROTEIN
POSTTRANSLATIONAL
MODIFICATIONS

(PTM)

Gramatikoff K. in Abgent Catalog (2004-5) p.263
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EVOLUTION OF
PHOSPHOSITES

- phosphosites were shown to be under evolutionary
constraint because they are having key roles in protein
function

Boekhorst et al. Genome Biol 2008

Gnad et al., Genome Biol 2007

- but at the same time a lot of phosphosites were found with
a more rapid evolutionary turnover or unknown function
(i.e. unspecific phosphorylation <> non-functional
phosphorylation)

Ubersax&Ferrell Jr, Nat Rev Mol Cell Biol 2007

Lienhard, Trends Biochem Sci 2008

Malik et al., Bioinformatics 2008




[Genome Analysis

Weak functional constraints on phosphoproteomes Trends

| Genetics]|

Christian R. Landry”, Emmanuel D. Levy" and Stephen W. Michnick
‘Volume 25, Issue 5, May 2009, Pages 193197

1. Mapping phosphosites on proteomes

Ny
Qhosphasues were compiled from several phosphoproteomic experiments and databases (Table S1) j
Scientific question:
DoeS the 2. Reconstructing ancestral sequences by ML
phosphoproteome ‘jhg"m:‘“h"huh’umpmmm Infer oldest possible age of
- s E—— J . .
h S/ T h ﬁ:?ki e Determine ancestral r:g;:};"it:; 5‘::: TTJMUI mode
( ere ) ave a - T 5  sequencesatinternal _,
p p . Spec - node of the phylogeny Compare age af pS/pT with
s n —
slower evolutionary s
turnover than the
3. Mapping unstructured regions on proteomes
non-phosphorylated
N
Disorder was predicted using DISOPRED
proteome (here S/T)? ( i
4. Compute the relative evolutionary rates of all residues in the proteomes
r'ft:r.\n.:atenath:»n of all proteins in the proteomes and ™~
estimation of relative evolutionary rates using ratedsite
Protein 1 Protein 2 Protein n
Species 1 B = = - ' Disorder
Species 2 -
Species3 —S=— . ———— - ———_—— e - - - - Serines and threonines
. i phosphorylated in species 1
Species n = = & o g/ Serines and threonines not
SIT SIT S/T phosphorylated in species 1
' H | i
R N
e — T

The rate of evolution of pS/pT positions is compared to equivalent 5/7
positions. Equivalence is achieved by sampling proteins with probability
proportional to their number of phosphosites (Sup Methods). The fractions
of serines, threonines and disordered regions are also preserved.
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HOW MANY NON-FUNCTIONAL
PHOSPHOSITES ARE THERE? #1

1stassumption: non-functional phosphorylations are likely to
represent off-target interactions >> rare molecular events >>

should have lower abundance than (stochiometrically) higher
phosphorylated sites

(a)
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HOW MANY NON-FUNCTIONAL
PHOSPHOSITES ARE THERE? #2

2"d assumption: if rapidly evolving sites results from non-
functional (supposedly non-specific) phosphorylation events

>> underrepresentation in common protein kinase
recognition motifs

(b) Ordered Disordered
P=06 P < 510712

359 n=320 n=1343 n=598 n=3611

——

Rate of evolution
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HOW MANY NON-FUNCTIONAL
PHOSPHOSITES ARE THERE? #3

Last assumption: phosphosites with assigned function (e.qg.
site-directed mutagenesis and functional assay) evolve
slower than those without assigned function

(c)
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CONCLUSIONS

1)

2)

Phosphoproteomes evolve at a similar rate to that of non-
phosphorylated residues

Possible explanations:

- Most phosphosites occur in disordered regions and these
evolve rapidly

- The experimental setups used to charactarized those site
are highly sensitive and detect a fraction of non-functional
sites

For assessment of potentially meaningful (i.e. functional)
phosphosites, more information about the protein should
be taken into consideration, like

- Kinase recognition motifs
- Abundance of phosphosites




COMPUTATIONAL BIOLOGY

Comparative Analysis Reveals Conserved Protein
Phosphorylation Networks Implicated in _

Science Signaling

Multiple Diseases

Chris Soon Heng Tan,'?* Bernd Bodenmiller,®* Adrian Pasculescu,’ Marko Jovanovic,’
Michael O. Hengartner,* Claus Jorgensen,' Gary D. Bader,"? Ruedi Aebersold,>*%7
Tony Pawson,'? Rune Linding®t

(Published 28 July 2009; Volume 2 Issue 81 ra39)

Analysis of conservation of phosphoproteomes from high-
&low-throughput mass-spectrometry in yeast (S. cerevisiae),
fly (D. melanogaster) and worm (C. elegans) with human
reference set

positionally conserved sites conserved kinase-substrate
interactions (not necessarily
positionally conserved)
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Total number
of sites

“| « Human phosphorylated residues
23977

e Human phosphorylated residues in
proteins with orthologs in at least one
target species

¢ Human phosphorylated residues in
roteins with phosphoorthologs in at
east one target species

e«Human phosphorylated residues
aligned to phosphorylatable residues in
phospho-orthologs

<! #Human phosphorylated residues
aligned to phosphorylated residues in
616 phospho-orthologs
» Core sites: Human phosphorylated residues
aligned to phosphorylated residues after
assessment of local sequence alignment
(bootstrap analysis)
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CONCLUSIONS

- Pro: Comparing phosphorylation patterns between
humans (reference set) and multiple target species
provides clues to disregulated phosphorylation hubs in
cancer and other human diseases

- Contra: no functional validation provided




Systematic Functional
Prioritization of Protein
Posttranslational Modifications

Pedro Beltrao,’3* Véronique Albanése,? Lillian R. Kenner,'-? Danielle L. Swaney,5 Alma Burlingame,?-3 Judit Villén,5
Wendell A. Lim,'-26 James S. Fraser, -2 Judith Frydman,# and Nevan J. Krogan':3.7-*

1Department of Cellular and Molecular Pharmacology

2Department of Pharmaceutical Chemistry

University of California, San Francisco, San Francisco, CA 94107, USA

3California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94107, USA

4BioX Program, Biology Department, Clark Center, Stanford, CA 94305, USA

5Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA

6Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA

7J. David Gladstone Institute, San Francisco, CA 94158, USA

Scientific question: How to refine and identify functionally
relevant protein posttranslational modifications (PTM) —
«most significant bottleneck in proteomic studies of
posttranslational modification»




SYSTEMATIC FUNCTIONAL
PRIORITIZATION OF PROTEIN
POSTTRANSLATIONAL MODIFICATIONS

-  Compilation of ~200.000 phosphorylation, acetylation and
ubiquitination sites from 11 eukaryotic species (incl. H.
sapiens and M. musculus)

- Experimental determination of ~ 2.500 ubiquitination sites

for S. cerevisiae

Mode-of-action s @
3 (e cROte
® © L3 .5";‘;“/){

55 Sadiiy

Cross-regulation
between PTMs

Regulation of
interfaces

Conservation
STA ‘*\
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e, ¥

NN

Regulation of
domain activity

PTM functionality

Beltrao et al., Cell 2012




DATA SETS

- Phosphorylation data set

3 fungi (S. cerevisiae, Schizosaccharomyces pombe, and Candida albicans)
2 plant species (Arabidopsis thaliana and Oryza sativa)

3 mammals (Homo sapiens, Mus musculus, and Rattus norvegicus)

+ Xenopus laevis, Drosophila melanogaster, and Caenorhabditis elegans

- 13,133 lysine acetylation sites

H. sapiens, M. musculus and Drosophila melanogaster

- 22,000 human ubiquitylation sites

- MS approach to experimentally determine 2,500 ubiquitylation sites in
S. cerevisiae to facilitate comparative studies.

Using a set of 12 different S. cerevisiae phosphoproteomics experiments,
estimated false discovery rate < 4% of false-positive sites

Human data set = reference data set




PHOSPHORYLATION DATA SET

observed conservation ratio observed/random conservation
B )
A 100 1 Phospho-acceptor residue 3.5 Phospho-acceptor residue
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Beltrao et al., Cell 2012




OBSERVED VS EXPECTED
PHOSPHOSITES

S.cer phosphosites [kamm  *Random
Sampling

Peptide count = 1 ‘ s Observed
- Conservation
>1 Peptide count <10 L

Peptide count>10_“
Kinase preference_n
Regulated (SILAC)_“
With known kinase_h

0 0.1 0.2 0.3
Beltrao et al., Cell 2012 Conservation in H.sap

Conclusion: more functional assignments to error bars = 1 s.d.

PTMs are needed to improve data quality




FUNCTIONALITY OF PTMs IN
UNSTRUCTURED DOMAINS

. Within PFAM % Qutside

Species PTM type PTM total domains PEAM domain
Phosphorylation 31165 11726 62.4
H. sapiens Acetylation 8042 4604 42.8
Ubiquitylation 22057 11079 497
Phosphorylation 24921 6825 72.6
M. museulus Acetylation 3384 2298 32.1
R. norvegicus  Phosphorylation 1885 913 51.6
X. laevis Phosphorylation 470 149 68.3
C. elegans Phosphorylation 6715 1074 84.0
D. melanogaster Phosphorylation 17535 2081 88.1
Acetylation 1707 858 49,7
S. pombe Phosphorylation 2540 636 75.0
Phosphorylation 15144 3747 75.3
5. cerevisiae Acetylation 657 433 341
Ubiquitylation 2499 1426 42.9
C. albicans Phosphorylation 2910 532 81.7
A. thaliana Phosphaorylation 4527 648 85.7
0. sativa Phosphorylation 3140 633 0 8

Beltrao et al., Cell 2012 (supplemental data)

Degrades protein kinases
Activates protein kinases
Regulates protein phosphatases?

UBIQUITINATION

PHOSPHORYLATION

Allosteric regulation

Prot | degr
Protein processing Protein-protein interaction

Membrane protein trafficking Steric/charge effects

Creates phospho-degrons
Regulates E3 ligase activity
Regulates substrate localization
Regulates DUB activity?

Hunter, Mol Cell 2007

Question: can functionality be assigned to PTM sites that are

multiply posttranslationally modified?




ASSOCIATION OF PROTEIN
PHOSPHORYLATION WITH LYSINE
POSTTRANSLATIONAL MODIFICATIONS
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Beltrao et al., Cell 2012




PTMs AS Protein-Protein Interactions (PPIs) in H
REGULATORS OF sapiens and S. cerevisiae -

PROTEIN-PROTEIN
INTERACTIONS

Interface models through Additional putative
X-ray structures, interface residues through
complementation with the 3DID database of
docking solutions as domain-domain
described in Mosca et al., interactions (Stein et al,
PLOS Comp Biol 2009 Nucl Acid Res 2011)

Homology models from the

GWIDD (Genome-wide
protein docking database)

Applied in 11
proteomes from
different species

Putative PTMs that regulate PPls

3,968 phosphorylation

1,802 ubiquitylation
1,691 acetylation sites




S. CEREVISIAE PHOSPHOSITES ARE MORE
LIKELY TO BE CONSERVED AT INTERFACE
RESIDUES THAN AVERAGE PHOSPHOSITES

A

B Random Sampling [ Observed Conservation

IRandom Sampling ¥Observed Conservation T
Phosphorylated interfaces‘1

A

@ PFAM interaction residue
2

=| Interface residue
7p]

0

= Within PFAM domains
©
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Interface Residues h
PFAM interaction residuesh

Within PFAM domains g

0

H. sap phosphosites

All sites h

0.1 0.2 0.3 0 0.1 0.2 03
Conservation in H.sap Conservation in S. cer




OTHER PTMS ARE ALSO MORE LIKELY TO BE

CONSERVED WHEN RESIDING AT INTERFACE
RESIDUES

B
Ubi. at interface |
Ubiquitylation Sites:
Phos. at interface ] .
Phosphosites

Ace. at interface ] .
Acetylation Sites
Phos. at interface ]
. *

D.mel PTMs S.cer PTMs

Phosphosites

0 1 2 3 4
Conservation in H.sap / Random expectation

Conclusion: acetylation and phosphorylation, but not ubiquitylation
are reqgulators of binding affinity of protein interactions




TESTING PROTEIN-PROTEIN
INTERACTION DEPENDENCY ON
PHOSPHORYLATION STATUS
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PHOSPHOSITE
SIMILARITY

A m Random Sampling ™ Observed Conservation _ 50% Of phosphorylated interfaces
Ph?;zf:fgrg;ted [ - > In S. cerevisiae are conserved in
| | H. sapiens while only ~ 18% of the
s resldin interface residues (i.e. AA) are
: Cons(:rzvation (i)r-14H.sezpo.6 COnserved.
B True observation? Lack of coverage?

Random { o+ | |—+ o
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Kinase
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Enrichment over random

0 100 200 300

POSTTRANSLATIONAL
HOT SPOTS WITHIN
DOMAIN FAMILIES

Protein Kinase
Acetylation-hot spots
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HSP70 was taken for further
experiments




g 10 N?D

T 197 HSP70 - SBD

E 8 l_l_|
5 6 '

2 4 ny

g rfleeesesenep L

Q

_§_ 0 ' | Enrichment
g 0 100 200 300400 500 over random
I-E Position within domain

Low High

nucleotide binding

pocket peptide binding groove

SSALl is a cytosolic HSP70 in yeast >> D and A
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Yeast spotting assay Binding of HSP70 to polysomes
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CONCLUSIONS

- Robust source of nearly 200.000 PTMs across 11 different
species to investigate PPIs through protein-interfaces or
domain activity

- Practical&theoritical example of functional priorization of
PTMs

- Could also be used to study the evolution of
posttranslational regulation
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