Investigating primary protein structure by nanopores

Coulter-counter

1953 - Patented 1970 - widely used for cell counting

- Current recorded through the pore
- Particles floating through the pore hinder the current flow:
 - · #of particles=Fq of current drops
 - · size of a particle=amplitude of the current drop

Nanopores

Howorka S, Siwy Z, Chem Soc Rev, 2009

Defining properties of NP analytics

- "blank" pores; no specificity to substrate detection is based on steric effects
- pores are in artificial membranes; organic/inorganic

Various types of Nanopores

protein, silicone, polymer (PET, PC), glass nanopipettes

Protein Nanopores

- α-hemolysin (αHL); · OmpG; heptameric, robust mor blank goo no moving part flexi
 - monomeric good for single mutations flexible loops
 - OmpG; MspA, gramicidin, alamethicin

Engineering of protein Nanopores - AA change

Histidine for metal binding Hydrophobic ring for aromatic substrate

· ligands to bind DNA, Antibodies

Lipid bilayer

- 30-100µm orifices in hydrophobic polymers filled with electrolyte template the lipids, then pore solution is added
- · membrane stabilizers

Detailed analysis of Proteins with Nanopores

Analytes

Folded/unfolded proteins

- solid-state pores for detecting folded proteins
- denaturing agents to sense unfolded proteins

Peptides

Coulter-counter

1953 - Patented 1970 - widely used for cell counting

- Current recorded through the pore
- Particles floating through the pore hinder the current flow:
 - #of particles=Fq of current drops
 - size of a particle=amplitude of the current drop

Nanopores

Howorka S, Siwy Z, Chem Soc Rev, 2009

Defining properties of NP analytics

- "blank" pores;
 no specificity to substrate
 detection is based on steric effects
- pores are in artificial membranes; organic/inorganic

Various types of Nanopores

protein, silicone, polymer (PET, PC), glass nanopipettes

Protein Nanopores

α-hemolysin (αHL);
 heptameric, robust monomeric blank good for sing no moving part

monomeric
good for single mutations
flexible loops

 OmpG; MspA, gramicidin, alamethicin

Engineering of protein NanoporesAA change

- Histidine for metal binding
 Hydrophobic ring for aromatic
 substrate
- ligands to bind DNA, Antibodies

Lipid bilayer

- 30-100µm orifices in hydrophobic polymers filled with electrolyte template the lipids, then pore solution is added
- membrane stabilizers

Analytes

Folded/unfolded proteins

- solid-state pores for detecting folded proteins
- denaturing agents to sense unfolded proteins

Peptides

Unfoldase-mediated protein translocation through an α -hemolysin nanopore

Jeff Nivala, Douglas B Marks & Mark Akeson

Similar result without ClpX-Tag Smt3

Single-molecule site-specific + detection of protein phosphorylation with a nanopore

Christian B Rosen¹⁻³, David Rodriguez-Larrea^{1,3} & Hagan Bayley¹

Multistep protein unfolding during nanopore translocation

David Rodriguez-Larrea and Hagan Bayley*

Step 4 + 1

Conclusions

- It is possible to unfold proteins through a nanopore in a controlled manner
- It is possible to discriminate current traces of different AA sequences and PTM states (phosphorylation)

Advantages

In contrast to MS:

- No fragmentation

Drawbacks

- Needs calibration (no "fishing")
- Needs High purity
- Single polypeptide chain analysis
 Works only close to the c-term yet

Thank you for your attention!

Investigating primary protein structure by nanopores

Coulter-counter

1953 - Patented 1970 - widely used for cell counting

- Current recorded through the pore
- Particles floating through the pore hinder the current flow:
 - #of particles=Fq of current drops
 - · size of a particle=amplitude of the current drop

Nanopores

Howorka S, Siwy Z, Chem Soc Rev, 2009

Defining properties of NP analytics

- "blank" pores; no specificity to substrate detection is based on steric effects
- pores are in artificial membranes; organic/inorganic

Various types of Nanopores

protein, silicone, polymer (PET, PC), glass nanopipettes

Protein Nanopores

- α-hemolysin (αHL); OmpG; heptameric, robust monomer
 - blank good for single mutations no moving part flexible loops
 - OmpG; MspA, gramicidin, alamethicin

Engineering of protein Nanopores • AA change

Histidine for metal binding Hydrophobic ring for aromatic substrate

· ligands to bind DNA, Antibodies

Lipid bilayer

- 30-100µm orifices in hydrophobic polymers filled with electrolyte template the lipids, then pore solution is added
- membrane stabilizers

Detailed analysis of Proteins with Nanopores

About 5 to 3 Maranam Table (1970) About 5 to 4 Mar

Folded/unfolded proteins

- solid-state pores for detecting folded proteins
- denaturing agents to sense unfolded proteins

Daniel Kirschenbaum, Technical Journalclub, Institute of Neuropathology, 01/07/2014