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Global quantification of mammalian gene
expression control
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& Matthias Selbach'
* 5000 mRNA and proteins analysed in mouse fibroblast (a quater of mouse genome)

e 40% of variation m protein levels 1s defined by mRNA levels (the results of transcription
and mRNA degradation)

*  41-54% of the variation in concentration across proteins can be attributed to differences
mn translation rates (while the rates of degradation have surprisingly small roles)

e translation efficiency 1s the single best predictor of protein levels
e protemn abundance seems to be predominantly regulated at the ribosome

the ‘second half’ of the central dogma of biology has a role
much bigger than that has been recognized to date



Technmiques for monitoring protein translation have lagged far behind methods for
measuring mRNA levels
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Microarray-based measurements of mRNA _
Exploring the new world of the genome

abundance have revolutionized the study of gene with DNA microarrays

expression

Patrick O. Brown'-? & David Botstein2

There 1s a critical need for techniques that directly monitor protein synthesis:

e  mRNA levels are an imperfect proxy for protein measurement because mRNA
translation 1s subject to extensive regulation

e Predicting the exact protein product from the transcript sequence 1s not possible
because of effects such as mternal ribosome entry sites, mitiation at non-AUG
codons, and nonsense read-through

e  Programmed ribosomal pausing during protein synthesis 1s thought to aid the co-
translational folding and secretion of some proteins



More direct evidence supporting the widespread role of translational control comes from
studies of the global association between mRNAs and ribosomes.

Because mRNAs that have a higher translational activity are associated with more
ribosomes, the polysome microarray technique has been used to study genome-wide
mRNA translation.
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This approach suffers from Imited resolution and accuracy.

Additionally, upstream open reading frames (WORFs)—short translated sequences found 1n
the 5" untranslated region (5'UTR) of many genes—result in mRNA that are bound to a
ribosome and yet are not translated mto a protein

Advances 1n quantitative proteomics circumvent some of these problems, but there
currently are substantial lmits on theiwr ability to mdependently determine protein
sequences and measure low-abundance proteins.
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The technique involves two
steps:

- 1solation of mRNA
fragments, obtained by
RNAse treatment (or random
RNA fragmentation);

- 1dentification and
quantification of these
fragments by RNA-seq




ISTEP : isolation of
mRNA fragments, obtained
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Ribosome footprint: portion of a mRNA template 30nt
long that the ribosome protects from nuclease digestion
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Depth (coverage) in DNA sequencing: refers to the number of times a
nucleotide is read during the sequencing process.

Deep sequencing indicates that the depth of the process is many times
larger than the length of the sequence under study. deep sequencing library



RIBOSOME PROFILING
STRATEGY

e Quantifying mRNA abundance by deep sequencing
e Monitoring ribosome position with single codon resolution by deep sequencing
* Genome-wide measurements of translation

e Genome-wide mvestigation with subcodon resolution
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Monitoring ribosome position with single codon resolution by deep

sequencing
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Monitoring ribosome position with single codon resolution with deep

sequencing
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Genome-wide measurements of translation

From 7 million footprint
sequences, they measured
the translation of 4648

of 5295 genes
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Genome-wide mvestigation with sub-codon resolution

Ribosome profiling reveals different phases of translation
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Ribosome profiling reveals different phases of translation
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Codon-specific measurements
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Codon-specific measurements of ribosome positions
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Codon-specific measurements of ribosome positions
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Strategy Application

Translational responses to starvation

20 min of amino acid deprivation and made
ribosome-footprint and mRNA-abundance
measurements

comparison starvation and log-phase growth M
measurements for the 3769 genes
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changes in mRNA abundance and translational efhiciency
changes 1n response to the starvation

log2 translational
efficiency change
o

-0 _ -
- ) Ribosome L
biogenesis °
—4 T | T | T | | T
-6 -4 -2 0 2 4 6

log2 mRNA change




Changes in 5’ U'TR translation during starvation

Ribosome and mRNA densities in the

GCN4 5'UTR m repressive and inducing conditions. The
four known uORFs are indicated

along with the proposed initiation sites for upstream
translation.
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The non-AUG uORFs showed a particularly dramatic
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PERSPECTIVE

Ribosome profiling greatly increases the ability to quantitatively monitor protein production

It should become a central tool in the repertoire available for studying the internal state of
cells

The basic strategy 1s readily adaptable to other organisms, including mammals

Could be use for studies of the translational control of gene expression and molecular
characterization of disease states such as cancer, in which associated cellular stress will
probably directly affect translation

Measurements of the effects of starvation on translational activity also revealed widespread
and regulated nitiation at non-AUG codons

The high-resolution gene-specific ribosome density profiles will enable efforts to explore
how variations in the rate of translation, as well as effects such as ribosomal pausing,
modulate protein synthesis and folding.



THANKS FOR YOUR ATTENTION!
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