Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 00000000	Discussion & Conclusion

Large-scale, high-resolution electrophysiological imaging with microelectronic multielectrode arrays the BioCAM

Journal Club

Marie-Angela Wulf

21.1.2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 000000000	Discussion & Conclusion
Overview				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Background
 - electrophysiological recording techniques
 - what do we measure extracellularly?
 - Things to consider for MEAs
 - the Active-Pixel-Sensor (APS)
 - Concept
- 2 Article 1
- 3 Article 2 (& 3)
 - Results
 - Advanced Data Analysis
- 4 Article 4
 - Results
 - Advanced Data analysis
- 5 Discussion & Conclusion

 Background
 Article 1
 Article 2 (& 3)
 Article 4
 Discussion & Conclusion

 •••••••••
 ••••••••
 •••••••••
 •••••••••
 •••••••••

electrophysiological recording techniques

intracellular

extracellular

- Sharp electrodes
- Patch clamp
 - Cell attached
 - Whole cell
 - Inside-out
 - Outside-out

- Single electrodes
- Multiple electrodes
 - Tetrodes
 - Multi-electrode arrays (MEA)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• (EEG)

- Voltage changes at electrode site
- Both: Local field potential and Spikes
- Spikes: fast frequency component. Reflects the AP of one or more neurons

Rendering a start of the second s

• LFP: slow frequency component. Reflects simultaneous activity of dendrites of similar orientation and geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Background coococo Article 1 Article 2 (& 3) coococo Article 4 coococo Discussion & Conclusion Conclusion Discussion & Conclusion

Things to consider for MEAs

- Passive vs. active electrodes
- Number, density and geometric arrangement of electrodes (spatial resolution)
- Sampling Rate (temporal resolution)
- Noise level (typical amplitude spikes: 100uV, LFP: up to mV)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Power Consumption (Heating!)

nassive vs	active M	1FAs		
Background	Article 1	Article 2 (& 3) 0000000	Article 4 000000000	Discussion & Conclusion

conventional, passive MEA

each electrode individually wired: number of electrode = number of wires

Examples

Multichannel-Systems

active MEA

amplifier under each electrode multiplexing: 4096 electrodes on 16 output lines

・ロト ・四ト ・ヨト ・ヨト

э.

Background Article 1 Article 4 Discussion & Conclusion 0000000 the Active-Pixel-Sensor (APS) APS Principle SONY -OVDD Reset Amplifier -ORead Cyber-shot

Electrode

0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Photo Element

-OAnalog Out -OGND

VDD

100=

V_{r1}

Background ○○○○○●○	Article 1	Article 2 (& 3) 0000000	Article 4 000000000	Discussion & Conclusion
Concept				

represent the electrophysiological data as a time sequence of images => Spatial resolution \uparrow

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

000000	Article 1	0000000	000000000	
3 Articl	es			
۲	Large-Scale, High-Resolu System for Extracell Electrophysiolo; Kilian Infeld*, Member IEE, Simon Neukom, Alessa Pierre-André Farine, Member, IEEE, Milien Active pixel sensor array for high spa electrophysiological recordings from s networks†	ution Data Acquisition ular Recording of gical Activity dro Maccione, Yannick Bornat, Sergio Martinoia, Koodelka-Hep, and Laca Berdondini tio-temporal resolution single cell to large scale neuronal	2008	
۲	Luca Berdondini, ^{4a} Kilian Imfeld, ⁴ Alessandro Maccio Milena Koudelka-Hep ^b and Sergio Martinoia ^{ac}	ne," Mariateresa Tedesco, ^e Simon Neukom, ^d	2009	
۹	frontiers in NEURAL CIRCUITS		METHODS ARTICL published: 14 November 20 doi: 10.3388/froir.2012.000	E 22

Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays

2012

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

E. Ferrea¹, A. Maccione¹, L. Medrihan¹, T. Nieus¹, D. Ghezzi¹, P. Baldelli^{1,2}, F. Benfenati^{1,2} and L. Berdondini^{1*}

¹ Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy

² Department of Experimental Medicine, Università di Genova, Genoa, Italy

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 00000000	Discussion & Conclusion
the APS-I	МЕА			

- Active-pixel sensor multielectrode array (APS-MEA)
- 4096 electrodes simultanously
- 2.6×2.6mm² active area
- 567 pixels/mm²
- Sampling rate: 7.8-125kHz (zoom)
- 21x21µm electrode size & 21µm inter-electrode distance

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 00000000	Discussion & Conclusion
the APS-	MFA			

- Active-pixel sensor multielectrode array (APS-MEA)
- 4096 electrodes simultanously
- 2.6x2.6mm² active area
- 567 pixels/mm²
- Sampling rate: 7.8-125kHz (zoom)
- 21x21µm electrode size & 21µm inter-electrode distance

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 00000000	Discussion & Conclusion
the APS-I	MEA			

- Active-pixel sensor multielectrode array (APS-MEA)
- 4096 electrodes simultanously
- 2.6x2.6mm² active area
- 567 pixels/mm²
- Sampling rate: 7.8-125kHz (zoom)
- 21x21µm electrode size & 21µm inter-electrode distance

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 00000000	Discussion & Conclusion
the APS-I	MEA			

- Active-pixel sensor multielectrode array (APS-MEA)
- 4096 electrodes simultanously
- 2.6x2.6mm² active area
- 567 pixels/ mm^2
- Sampling rate: 7.8-125kHz (zoom)
- 21x21µm electrode size & 21µm inter-electrode distance

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 00000000	Discussion & Conclusion
the APS-I	MEA			

- Active-pixel sensor multielectrode array (APS-MEA)
- 4096 electrodes simultanously
- 2.6×2.6mm² active area
- 567 pixels/ mm^2
- Sampling rate: 7.8-125kHz (zoom)
- 21x21µm electrode size & 21µm inter-electrode distance

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 000000000	Discussion & Conclusion
the APS-	MEA			

- Active-pixel sensor multielectrode array (APS-MEA)
- 4096 electrodes simultanously
- 2.6×2.6mm² active area
- 567 pixels/mm²
- Sampling rate: 7.8-125kHz (zoom)
- $21 \times 21 \mu m$ electrode size & $21 \mu m$ inter-electrode distance

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 - のへで

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 000000000	Discussion & Conclusion
the APS-	MEA			

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

 Background
 Article 1
 Article 2 (& 3)
 Article 4
 Discussion & Conclusion

 0000000
 0000000
 000000000
 000000000

Validation in hippocampal cell culture

Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks[†]

Luca Berdondini, ^{4a} Kilian Imfeld, ^b Alessandro Maccione,^a Mariateresa Tedesco,^c Simon Neukom,^d Milena Koudelka-Hep^b and Sergio Martinoia^{ac}

Lab on a Chip

Miniaturisation for chemistry, physics, biology, & bioengineering

www.rsc.org/loc

Volume 9 | Number 18 | 21 September 2009 | Pages 2613-2744

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Background 0000000	Article 1	Article 2 (& 3)	Article 4 000000000	Discussion & Conclusion
methods				

recordings

data processing

- Dissociated hippocampal cell cultures grown on the Chip
- rat E18
- 150-1500 cells $/ mm^2$
- Recordings of spontanous activity from 2nd week
- 7.8kHz
- 2-10min

• spike and burst detection algorithm

spontanous	hurst ac	tivity		
Background 0000000	Article 1	Article 2 (& 3) ●000000	Article 4 000000000	Discussion & Conclusion

(ロ)、(型)、(E)、(E)、 E) の(()

Video: Supplement. Video 1 2009

Background 0000000	Article 1	Article 2 (& 3) 0●00000	Article 4 000000000	Discussion & Conclusion
		1		

spontanous activity analysis

Background 0000000	Article 1	Article 2 (& 3) 00●0000	Article 4 000000000	Discussion & Conclusion

stimulated activity

A before bicuculline

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

network	dynamics			
Background 0000000	Article 1	Article 2 (& 3) 000●000	Article 4 000000000	Discussion & Conclusion

Video: Supplement. Video 2 & 3 2009

Background 0000000	Article 1	Article 2 (& 3)	Article 4 00000000	Discussion & Conclusion
Trajectory	analysis			

Video: image 35.gif

 Background cooocoo
 Article 1
 Article 2 (& 3) cooocoo
 Article 4 cooocooco
 Discussion & Conclusion

 Comparison to conventional MEA image 10.gif
 image 10.gif
 image 10.gif
 image 10.gif
 image 10.gif

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Source: Maccione et.al, Frontiers in Neuroengineering, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

Article 4 - Validation in acute slices

METHODS ARTICLE published: 14 November 2012 doi: 10.3389/fncir.2012.00080

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays

E. Ferrea¹, A. Maccione¹, L. Medrihan¹, T. Nieus¹, D. Ghezzi¹, P. Baldelli^{1,2}, F. Benfenati^{1,2} and L. Berdondini^{1*}

¹ Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy

² Department of Experimental Medicine, Università di Genova, Genoa, Italy

0000000	0000000	000000000	
recordings			

- Acute hippocampal slices
- Spontanous and evoked field excitatory postsynaptic potentials and spiking activity in the dentate gyrus (DG)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 7.7kHz
- 20min recording
- Modulation with convulsant drugs (4-AP, THIP)

0000000		0000000	•00000000	
Spontanous	s activity			

(ロ)、(型)、(E)、(E)、 E) の(()

Video: Supplement. Video 1 2012

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 o●oooooo	Discussion & Conclusion
Comparison	I - single i	ntra- & extrac	ellular elect	trode

Patch Clamp

- patch-clamp and APS-MEA simultanously
- synchronization of slice with 4-AP

Single-electrode field recording

- electrical stimulation of perforant path
- recording from APS-MEA and moving conventional electrode ∝

イロト 不得 トイヨト イヨト

3

- dye: RH-795
- 80x80 pixel camera => image scaled
- sampling rate: 2 kHz

Background	Article 1	Article 2 (& 3)	Article 4	Discussion & Conclusion
			00000000	

event propagation analysis

С

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 Background
 Article 1
 Article 2 (& 3)
 Article 4
 Discussion & Conclusion

 0000000
 0000000
 00000000
 00000000
 00000000

Classification algorithm of distinct events

Background Article 1 Article 2 (& 3) Article 4 Discussion & Conclusion

Classification algorithm of distinct events

CI	C 11			
Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4	Discussion & Conclusion

Changes of distinct Clusters among THIP treatment

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

Background 0000000	Article I	0000000	Discussion & Conclusion
<u></u>			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Short-term plasticity analysis

Summary of	(nossible)	Readouts		
Background Ar	rticle 1	Article 2 (& 3) 0000000	Article 4 00000000	Discussion & Conclusion

- Overall excitatory status
 - Firing and bursting rate
 - Inter-Spike and inter-burst interval
- Investigation of local field potentials
- Cluster analysis
- Trajectory analysis (including velocity)
- Investigation of Plasticity
- Connectivity analysis in cell cultures => Maccione et.al, Journal of Neuroscience Methods, 2012
- Investigation of cellular subtypes (Combination with Staining)
 => A. Maccione et al., SFN2011, 2011

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 00000000	Discussion & Conclusion
Discussion				

Advantages

- easy-to-use system
- reusable Chips
- good combination of high resolution with reasonable sampling frequence
- single-cell resolution in cell cultures
- fast acquisition of data
- free Software
- Detection of spikes and LFPs

Drawbacks

- Origin of signal not clear in slices
- cumbersome data analysis
- generates huge amounts of data (about 60MB/s => ~36GB/ 10min)
- requires high-performance computers for certain types of analysis

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 000000000	Discussion & Conclusion
Conclusion				

- useful for all experiments using extracellular recordings
- useful for an overview of activity and the analysis of network dynamics and connectivity
- useful for studying the effect of drugs on the network dynamics

• ideal for combination with recordings on intracellular level (Patch Clamp and VSDs)

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 000000000	Discussion & Conclusion
Questions?				

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 00000000	Discussion & Conclusion
Thank you!				

<ロ>

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 000000000	Discussion & Conclusion
Tetrode				

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Background 0000000	Article 1	Article 2 (& 3) 0000000	Article 4 000000000	Discussion & Conclusion
Silhouette	coefficient			

Calculates whether an object is clustered correctly or not by using the distance to the other objects of n clusters

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ