Why DNA Isn't Your Destiny Courtesy of: Matthew Forsythe ## GENOME: a genome is an organism's complete set of DNA, including all of its genes. Each genome contains all of the information needed to build and maintain that organism modified by mashable.com ## From GENOME to EPIGENOME to CELLS to ORGANISMS The early embryo is made up of stem cells, which can give rise to any type of cell. 50-70 trillion cells!!!! Cells listen for signals ## Types of signals 1. Direct Contact 2. Transmission (factor release) 3. Hormones 4. Combo #### From GENOME to EPIGENOME to CELLS to ORGANISMS ## Proteins Carry Signals to the DNA ## Gene Regulatory Proteins Have Two Functions ## Paradigm #### **ORGANISM** "Force a rethink of the definition of a gene and of the minimum unit of heredity." #### **MODIFICATIONS** ## III. ncRNA associated gene silencing www.morrislab.unsw.edu.au ## RESEARCH CONSORTIA # BLEPRINT epigenome ## **BLOOD CELLS** ## **CELL LINES** 111 CELLS & TISSUES #### AIMS - 1. How is genetic information interpreted by single cells? - 2. Annotate cis-regulatory elements. - 3. Create *maps* of epigenomic modifications. - 4. Produce clinically usefull epigenetic information. - 5. Dissect gene regulatory programs in development and disease. ## I. DNA methylation - a) Sodium bisulfite modification - b) Sequence-specific enzyme digestion - c) Capture/quantification of methylated DNA ## a) Sodium bisulfite modification ## b) Sequence-specific enzyme digestion ## c) Capture/quantification of methylated DNA (MeDIP) ## **II. Chromatin Modifications** a) Chromatin Immunoprecipitation ## a) Chromatin Immunoprecipitation (ChIP) ## a) RNA-protein interactions (RIP) ## **ARTICLE** ## Integrative analysis of 111 reference human epigenomes Roadmap Epigenomics Consortium†, Anshul Kundaje^{1,2,3}*, Wouter Meuleman^{1,2}*, Jason Ernst^{1,2,4}*, Misha Bilenky⁵*, Angela Yen^{1,2}, Alireza Heravi-Moussavi⁵, Pouya Kheradpour^{1,2}, Zhizhuo Zhang^{1,2}, Jianrong Wang^{1,2}, Michael J. Ziller^{2,6}, Viren Amin⁷, John W. Whitaker⁸, Matthew D. Schultz⁹, Lucas D. Ward^{1,2}, Abhishek Sarkar^{1,2}, Gerald Quon^{1,2}, Richard S. Sandstrom¹⁰, Matthew L. Eaton^{1,2}, Yi-Chieh Wu^{1,2}, Andreas R. Pfenning^{1,2}, Xinchen Wang^{1,2,11}, Melina Claussnitzer^{1,2}, Yaping Liu^{1,2}, Cristian Coarfa⁷, R. Alan Harris⁷, Noam Shoresh², Charles B. Epstein², Elizabeta Gjoneska^{2,12}, Danny Leung^{8,13}, Wei Xie^{8,13}, R. David Hawkins^{8,13}, Ryan Lister⁹, Chibo Hong¹⁴, Philippe Gascard¹⁵, Andrew J. Mungall⁵, Richard Moore⁵, Eric Chuah⁵, Angela Tam⁵, Theresa K. Canfield¹⁰, R. Scott Hansen¹⁶, Rajinder Kaul¹⁶, Peter J. Sabo¹⁰, Mukul S. Bansal^{1,2,17}, Annaick Carles¹⁸, Jesse R. Dixon^{8,13}, Kai-How Farh², Soheil Feizi^{1,2}, Rosa Karlic¹⁹, Ah-Ram Kim^{1,2}, Ashwinikumar Kulkarni²⁰, Daofeng Li²¹, Rebecca Lowdon²¹, GiNell Elliott²¹, Tim R. Mercer²², Shane J. Neph¹⁰, Vitor Onuchic⁷, Paz Polak^{2,23}, Nisha Rajagopal^{8,13}, Pradipta Ray²⁰, Richard C. Sallari^{1,2}, Kyle T. Siebenthall¹⁰, Nicholas A. Sinnott-Armstrong^{1,2}, Michael Stevens^{21,42}, Robert E. Thurman¹⁰, Jie Wu^{24,25}, Bo Zhang²¹, Xin Zhou²¹, Arthur E. Beaudet²⁶, Laurie A. Bover¹¹, Philip L. De Jager^{2,23,27}, Peggy J. Farnham²⁸, Susan J. Fisher²⁹, David Haussler³⁰, Steven J. M. Jones^{5,31,32}, Wei Li³³, Marco A. Marra^{5,32}, Michael T. McManus³⁴, Shamil Sumyaev^{2,23,27}, James A. Thomson^{35,41}, Thea D. Tlsty¹⁵, Li-Huei Tsai^{2,12}, Wei Wang⁸, Robert A. Waterland³⁶, Michael Q. Zhang^{20,37}, Lisa H. Chadwick³⁸, Bradley E. Bernstein^{2,39,40}\$, Joseph F. Costello¹⁴\$, Joseph R. Ecker⁹\$, Martin Hirst^{5,18}\$, Alexander Meissner^{2,6}\$, Aleksandar Milosavljevic⁷\$, Bing Ren^{8,13}\$, John A. Stamatoyannopoulos¹⁰\$, Ting Wang²¹\$ & Manolis Kellis^{1,} ## MATERIAL #### b. Primary tissues and cells - fetal samples ## DATA SETS for each epigenome | а | b | С | d | е | f | g | h | i į | j k | |------------------|-------------------------------|--|---|---|-------------------|-----|------------|------------|------------------------------| | Sample type | Cell type/
tissue
group | EID | Epigenome name | H3K4me1
H3K4me3
H3K36me3
H3K27me3
H3K9me3 | H3K27ac
H3K9ac | Seq | DNA methyl | Gene expr. | Addtl marks
Chrom. states | | Primary cultures | ES cell | E017
E002
E008
E001
E015
E014
E016
E003
E024 | IMP30 fetal lung fibroblasts ES-WA7 cells H9 cells ES-13 cells HUES6 cells HUES6 cells HUES64 cells HUES64 cells H1 cells ES-USSF4 cells | į. | | | | 2 | 11 | | Priman | iPSC | E020
E019
E018
E021
E022 | iPS-20b cells
iPS-18 cells
iPS-15b cells
iPS DF 6.9 cells
iPS DF 9.11 cells | | | | | | | | ES cell derived | ES-deriv. | E007
E009
E010
E013
E012
E011
E004
E005
E006 | H1 derived neuronal progenitor cultured cells
H9 derived neuronal progenitor cultured cells
H9 derived neuron cultured cells
HUES64 derived CD56* mesoderm
HUES64 derived CD56* ectoderm
HUES64 derived CD56* ectoderm
HUES64 derived mesendoderm
H1 BIMP4 derived mesendoderm
H1 BIMP4 mesenchymal stem cells | | | | • | 1 | 5 | | y cells | Blood &
T cell | E062
E034
E045
E033
E044
E043
E039
E041
E042
E040
E037
E048
E038
E047 | Primary Toells from PB) Primary Toells from primary blood (from PB) Primary Toells from primary blood (from PB) Primary Toells from cord blood Primary Toells from cord blood Primary T regulatory cells (from PB) Primary T helper cales (from PB) Primary T helper cales (from PB) Primary T helper cales (from PB) Primary T helper cells from PB) Primary T helper memory cells (from PB) Primary T helper memory cells (from PB) Primary T lost* memory cells (from PB) Primary T lost* memory cells (from PB) Primary T lost* naive cells (from PB) Primary T lost* naive cells (from PB) | ä | | | | | | | Primary | HSC &
B cell | E029
E031
E035
E051
E050
E036
E032
E046
E030 | Primary monocytes (from PB) Primary B cells from cord blood Primary B cells from cord blood Primary HSCs G-CSF-mobilized male Primary HSCs G-CSF-mobilized female Primary HSCs G-CSF-mobilized female Primary HSCs short term culture Primary B cells (from PB) Primary natural killer cells (from PB) Primary natural killer cells (from PB) | 4 | | | | • | | | tures | Mesench. | E026
E049
E025
E023
E052 | Bone marrow derived MSCs
Mesenchymal stem cell deriv. chondrocyte
Adipose-derived mesenchymal stem cells
Mesenchymal stem cell derived adipocyte
Muscle satellite | | | | | | | | Primary cultures | Epithelial | E055
E056
E059
E061
E057
E058
E028
E027 | Foreskin fibroblast Foreskin melanocyte Foreskin melanocyte Foreskin keratinocyte Foreskin keratinocyte Foreskin keratinocyte Breast vHMEC mammary epithelial Breast myoepithelial | | | | | | | | | Neurosph. | E054
E053 | Ganglion eminence derived neurospheres
Cortex derived neurospheres | | | | | | | | | Thymus
Brain | E112
E093
E071
E074
E068
E069
E072
E067
E073
E070
E082 | Thymus Fetal thymus Brain hippocampus middle Brain substantia nigra Brain anterior caudate Brain cingulate gyrus Brain inferior temporal lobe Brain angular gyrus Brain deroicaletaral prefrontal cortex Brain germinal matrix Fetal brain female | | | | | | | | | Adipose | E070 | Brain germinal matrix | | | | | | | ### Chromatin State Annotation across tissues Promoters are primarily constitutive, while Enhancers are highly dynamic ## Chromatin State and DNA methylation dynamics #### **Chromatine States** #### Human ES cells ## Chromatin State and DNA methylation dynamics During Lineage Specification #### ES cell differentiation ## Chromatin State and DNA methylation dynamics During Lineage Specification #### Skin Cells Keratinocytes Surface Ectoderm Melanocytes Neural Crest Fibroblasts Mesoderm "Low overlap in DNA methylation & histone modification signatures." ## Epigenome Relationships "Lines with common developmental origins show similar epigenetic modification patterns." ## CONCLUSION "Common developmental origins can be a primary determinant of global DNA methylation patterns." #### CELL TYPE SPECIFICITY #### Chromatin states - 1. Hematopoietic stem cells and Immune cells show a consistent and previously unrecognized depletion of active and bivalent promoters (TssA, TssBiv) and weakly transcribed states (TxWk). - 2. ES cells and iPS cells show enrichment of TssBiv, consistent with previous studies. They also show a depletion of ReprPCWk, possibly due to restriction of H3K27m3-establishing Polycomb proteins to promoter regions. ## Epigenetic Dynamics - Regulators ### Linking Regulators to tissues & cell types ### Linking Epigenomic Enrichments to Disease traits | | Most enrich | | MH90 fetal lung fibroblasts HUES48 | 6 HUES64
7 IPS DF 19.11 | H1 derived MSCs Mononi dear cells periph | 4 T cells peripheral | T cells effector/memory enriched | 4 T regulatory cells peripheral | s I neiper cells periph.
9 Thelper naive cells periph. | 1 Thelper cells PMA-I stimulated | 1 helper 17 cells PMA-I stimulated
0 T helper memory cells periph. | T helper memory cells periph. | 8 1 CD8 memory cells periph.
8 Thelper naive cells periph. | T CD8+ naive cells periph. | B cells cord blood | Haematopoietic stem cells (HSCs) | HSCs G-CSF-mobilized female | HSCs short term culture | 2 B cells peripheral | Neutrophils peripheral | MSC-derived chondrocytes Adipose-derived MSCs | 3 MSC-derived adipocytes | 5 Foreskin fibroblasts
6 Foreskin fibroblasts | 1 Foreskin melanocytes | |---|-----------------|-------------|------------------------------------|----------------------------|--|----------------------|----------------------------------|---------------------------------|---|----------------------------------|---|-------------------------------|---|----------------------------|--------------------|----------------------------------|-----------------------------|-------------------------|----------------------|------------------------|---|--------------------------|--|------------------------| | Trait | Abbrev - | | 000 | | 88 | 183
183 | E08 | 383 | 2
2
2
2
3
3
3 | 4 | 88 | Egg | E03 | 8 | 88 | EGG | E05 | 8 | 86 | 18 | 38 | 18 | 윤 | 30E | | Height | ESC | 4.7 | 0 | | | П | Ī | П | T | П | T | | T | | Ī | | T | | T | | T | П | T | T | | Height | ESC | 4.0 | 0 | | | | | | | П | | П | | | | | | П | \perp | | | П | 工 | П | | Crohn's disease | Tper | 7.7 | \dashv | _ | | 0 | Η, | | + | Н | + | Н | + | Н | | Н | | | - | Н | 4 | Н | + | + | | Chronic lymphocytic leukaemia
Type 1 diabetes autoantibodies | Tcor
Treg | 4.9
4.6 | + | + | | | | 0 | + | Н | | | + | | | H | + | Н | - | | + | Н | + | + | | Type 1 diabetes autoantibodies | Treg | 4.1 | + | + | \vdash | Н | Н | 0 | + | H | + | | + | H | + | \vdash | + | Н | + | Н | + | Н | + | ++ | | Platelet counts | Th.nai | 4.6 | \top | + | | | H | | 0 | | + | | | H | + | H | + | Н | + | H | \top | Н | + | ++ | | Chronic lymphocytic leukaemia | Th.stm | 5.7 | \Box | | | | | | | 0 | | | | | \top | П | \top | П | | П | \top | П | 土 | \Box | | Self-reported allergy | Th.stm | 4.9 | | | | П | | | | 0 | | | | | \perp | \Box | \perp | П | | П | \perp | П | \perp | \Box | | Graves' disease | Th.stm | 4.3 | $\perp \!\!\! \perp$ | \perp | Ш | Н | Ш | \bot | \perp | 0 | | Ш | _ | | _ | Щ | \bot | Ш | 4 | Ш | 4 | Ш | + | ++ | | Celiac disease | Th17st | 6.9 | \dashv | + | | Н | | | + | Н | 0 | Н | | | - | Н | + | Н | + | + | 4 | Н | + | ++ | | Rheumatoid arthritis
Multiple sclerosis | Th17st
Th.mm | 4.2
11.6 | + | + | | | | | | Н | 0 | | | | | Н | | Н | | | + | Н | + | ++ | | Celiac disease + rheum. arthritis | Th.mm | 5.6 | + | + | | Н | | | | Н | | 0 | | | | | + | Н | + | | + | Н | + | ++ | | Type 1 diabetes | Th.mm | 5.5 | \dashv | + | | Н | Н | | | Н | | O | | | + | H | + | Н | | Н | + | Н | + | ++ | | Systemic lupus erythematosus | Th.mm | 4.8 | | | | | | | | П | | 0 | | | | | 土 | П | | | | П | 土 | \Box | | Systemic lupus erythematosus | Bcor | 5.4 | | | | | | | \top | | | | | | 0 | | | | | | | | \perp | \Box | | Primary biliary cirrhosis | Bcor | 3.9 | \Box | | | | Ц | \Box | | П | \perp | Ц | \perp | Ц | 0 | Ц | | Ц | | П | | П | \perp | \Box | | Red blood cell traits | HSCmb | 5.9 | \perp | | ш | Ш | Щ | \perp | _ | Ш | \perp | Н | \perp | Ш | | _ | 2 | Ш | _ | ш | 4 | Ш | | $\perp \perp$ | | Platelet counts | HSCmb
HSCmb | 8.0
5.0 | + | | | Н | Н | - | | H | _ | Н | | Н | | | 0 | Н | | Н | | Н | | - | | Mean platelet volume
Mean platelet volume | HSCmb | 3.9 | + | | | Н | Н | ++ | + | ₩ | + | \vdash | + | H | | Н | 0 | | + | Н | + | Н | + | ++ | | Rheumatoid arthritis | Bper | 8.5 | + | + | | | | | | | | | | | | H | - | Н | 0 | Н | + | Н | + | ++ | | Multiple sclerosis | Bper | 4.7 | $\dashv \vdash$ | + | | П | | | | П | | | | | | | | Н | 0 | Н | + | Н | + | ++ | | Rheumatoid arthritis | NKper | 5.0 | | | | | | | | | | | | | | | | | (|) | | П | 土 | \Box | | Mean platelet volume | Fat | 4.2 | | | | П | | П | \bot | П | \top | П | \top | П | | | | П | \top | П | С |) | \perp | П | | LDL cholesterol | Liver | 6.8 | | 1 | | | | 1 1 | ı | ,
 1 | ı | 1 1 | ı | 1 1 | 1 | 1 | ı | ı i | ı | | | | 1 | | | Lipid metabolism phenotypes | Liver | 5.8 | + | + | $\vdash \vdash$ | H | \vdash | ++ | + | ₩ | + | \vdash | + | \vdash | + | \vdash | + | \vdash | + | + | + | + | + | ++ | | HDL cholesterol | Liver | 5.7 | $\dashv \vdash$ | + | \vdash | Н | \vdash | ++ | + | \forall | + | \vdash | + | \vdash | | \vdash | + | \vdash | + | \forall | | | | | | Cholesterol, total | Liver | 4.8 | $\dashv \vdash$ | \top | \sqcap | Н | \vdash | ++ | \top | \forall | \top | \sqcap | \top | \sqcap | | \vdash | \top | П | \top | \forall | | П | | 1 | | HDL cholesterol | Liver | 3.9 | | | | | | \Box | \perp | \Box | \perp | П | | | | | | 口 | 土 | \Box | | \Box | 土 | | | Metabolite levels | Liver | 3.9 | | | | | | | | | T | | | | | П | | | | | | | \perp | | | Platelet counts | T.Leuk | 4.5 | \perp | | | | | | | | | | | | | Н | | | | \sqcup | | \sqcup | \perp | | | Primary biliary cirrhosis | Lymph | 6.7 | + | + | | | | | | | | | | | | \vdash | | \sqcup | | H | + | + | + | ++ | | Mean corpuscular volume
Inflammatory bowel disease | Leuk
Mncyt | 4.7
14.6 | + | + | | | | | | | | | | | | | | | | | | H | | | | Ulcerative colitis | Mncyt | 6.3 | + | + | Alzheimer's disease (late onset) | Mncyt | 4.9 | $\dashv \vdash$ | + | \vdash | \forall | \vdash | ++ | + | \forall | | \vdash | + | | | | | | | Н | + | \forall | + | ++ | | Pre-eclampsia | Bone | 4.5 | \dashv | + | \vdash | + | \vdash | + | + | + | + | \vdash | + | | | Н | | | | | \vdash | \vdash | \perp | ++ | ## Predicting the human epigenome from DNA motifs John W Whitaker^{1,3}, Zhao Chen¹ & Wei Wang^{1,2} ## Analysis Pipeline ### Analysis Pipeline Large number of sequences Seq1 (1000bps) 1 2 3 4 5 6 7 8 9 10 Seq2 (800bps) 1 2 3 4 5 6 7 8 9 10 Seq3 (500bps) 1 2 3 4 5 6 7 8 9 10 Seq4 (600bps) 1 2 3 4 5 6 7 8 9 10 Seq4 (600bps) 1 2 3 4 5 6 7 8 9 10 H3 modification Function K4me1 Enhancers K4me3 Promoters K9me3 Repressive K27ac Active K27me3 Repressive Transcription DNA methylation Repressive Variable size regions Sequences are greatly unbalanced for G-C content **Motif Combinations** ## Analysis Pipeline -EPIGRAM ### Prediction Performance ### Motif distribution Paradigm #### Motif distribution is correlated with H3K27ac variation #### SUMMARY The first comprehensive catalog of DNA motifs Define the mechanisms by which DNA motifs orchestrate the epigenome In light of the genome editing technologies, these approaches can be used to guide <u>locus-specific epigenome editing</u> through alteration of the regulatory cis-elements. #### **OVERVIEW** - 1. How the epigenome affects gene expression? - 2. How the epigenome changes during stem-cell differentiation (normal development)? - 3. How the epigenome changes during disease? ## CAVEATS 1. Studies are based on analysis of cell populations → these clues must be validated experimentally | \rightarrow | Cellular Variability within populations | |---------------|---| | 2. | Tissue Sample: Enhancer landscapes represent the composite of cell types that make up the tissue | | \rightarrow | Use purified cell populations from in vivo sources | | 3. | The DNA sequences found in cell specific enhancers provide clues for TF that regulate the enhancers | ## Follow the Threads ## Thank you!