IN SITU SEQUENCING FOR RNA ANALYSIS IN PRESERVED TISSUE AND CELLS

Journal Club Nicolas Schmid February 18, 2014

Content

- Introduction
- Overview established methods
 - In situ hybridization, FISH
 - CISH
 - Laser-capture microdissection
- Padlock probes
- Paper1 (Larsson et al. 2010)
- Paper 2 (Rongqin et al. 2013)
- Summary
- Outlook

Introduction

- Information gained directly from pathological tissue
- High spatial resolution and histological context
- specific sequencing methods in mixed populations in different cell types
- potentially useful in diagnostics

Overview – established methods

- In situ hybridization, FISH
- CISH
- Laser-capture microdissection

In situ hybridization

- DNA/RNA antisense probe labeled with either radioactive labeled nucleotides or haptens (e.g. digoxigenin, biotin)
- Hybridization to target sequence
- DIG-labeled probe ist detected by anti-DIG-antibody conjugated with alkaline phosphate
- Catalytically converts the hybridization signal

Fluorescence in situ hybridization (FISH)

• (in)direct-labeled DNA/RNA probes with fluorophores

O'Connor, 2008

Chromogenic in situ hybridization (CISH)

- Modification of ISH using conventional peroxidase-reaction
- + detectable with light-microscope
- + no fading

• Her3/neu: multiple individual gene copies

Tanner et al., 2000

ISH, FISH

+

- Simple, useful for diagnostics
- Morphology based
- Dual or multicolor analyses
- High sensitivity

unspecific binding

- Not a genetic screening tool
- Signal fading (FISH)
- Cytological artifacts
- semi-quantitative
- limited to detecting large alterations

Laser-capture microdissection (LCM)

- Isolation of specific cells out of a heterogeneous tissue by cutting away unwanted cells
- Analyzation by PCR, RT-PCR, microarray, Western blotting etc.

LCM

+

- Fast and precise isolation of cell population
- Suitable for DNA, RNA, Protein detection
- Formalin-fixed parafin-embedded tissue section, frozen tissue, cytology preparaions

- Cell identifiaction underlies biased investigator
- Contamination of close cells possible
- Failure during liftoff method
- Fixation issues: cross-linking between formalin and proteins

- Fluorescence-activated cell sorting (FACS)
- Single cell sequencing
- In situ PCR
- Quantum dots

Padlock Probes: Circularizing Oligonucleotides for Localized DNA Detection

Mats Nilsson, Helena Malmgren, Martina Samiotaki, Marek Kwiatkowski, Bhanu P. Chowdhary, Ulf Landegren*

> M. Nilsson, H. Malmgren, M. Samiotaki, M. Kwiatkowski, U. Landegren, The Beijer Laboratory, Department of Medical Genetics, Box 589 Biomedical Center, S-75123 Uppsala, Sweden.

> B. P. Chowdhary, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, S-750 07 Uppsala, Sweden.

*To whom correspondence should be addressed.

SCIENCE • VOL. 265 • 30 SEPTEMBER 1994

«padlock» probe

- Linear oligonucleotides of approximatley 70-100nt
- Two target-complementary segments (20-25nt)
- Connected by a linker (50nt) that carrys detectable function
- Brought in juxtaposition by hybridization to a target sequence
- Segments covalently joined by DNA ligase

Rolling-circle amplification

- Unidircetional nucleic acid replication of DNA or RNA
- Occurs in genoms of bacteriophages, viroids

Weian et al., 2008

BRIEF COMMUNICATIONS

In situ detection and genotyping of individual mRNA molecules

Chatarina Larsson^{1,2}, Ida Grundberg^{1,2}, Ola Söderberg¹ & Mats Nilsson¹

¹Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden. ²These authors contributed equally to this work. Correspondence should be addressed to M.N. (mats.nilsson@genpat.uu.se).

RECEIVED 28 OCTOBER 2009; ACCEPTED 9 MARCH 2010; PUBLISHED ONLINE 11 APRIL 2010; CORRECTED AFTER PRINT 30 JULY 2010 (DETAILS ONLINE); DOI:10.1038/NMETH.1448

NATURE METHODS | VOL.7 NO.5 | MAY 2010 | 395

Detection of individual transcripts with padlock probes and targetprimed rolling-circle amplification (RCA)

Main steps

- a) LNA primer binds , reverse transcription
- b) RNase H digestion
- c) Padlockprobe hybridization
- d) DNA ligase
- e) DNA Polymersa
- f) Rolling-circle amplification

Larsson et al., 2010

padlock probes

a mRNA sequence ACTB

5' CGCCCCGCGAGCACAGAGCCTCGCCTTTGCCGATCCGCCGCCGTCCACACCCGCCGCCAGCTCACCATGGATGATGATATCG 3'

- cDNA sequence ACTB
 - 5' GTGGACGGGCGGCGGATCGGCAAAGGCGAGGCTCTGTGCTCGCGGGGGCG 3'
- C Padlock probe target site 5' GGCAAAGGCGAGGCTCTGTGCTCGCGGGGGCG 3'

- Complete linear padlock probe including detection sequence and filler sequence 5' AGCCTCGCCTTTGCCTTCCTTTACGACCTCAATGCACATGTTTGGCTCCTCTTCGCCCCGCGAGCACAG 3'
 - Primer with LNA-modified bases
 - 5' GTGGACGGGCGGCGGATCGGCAAAG 3'

Weibrecht et al., 2013

What now?

• Can different transcripts be distinguished?

• Can they be quantified?

Detection of singel nucleotide differences in actin transcripts

Cocultured human and mouse fibroblast cells Green: human β -actin Red: mouse β -actin

Fresh frozen mouse embryonic tissue (E14.5) α 1-actin (green), β -actin (red)

Larsson et al., 2010

Cell-to-cell variation in expression

β-actin in GM08402

а

 β -actin in GM08402

Multiplex *in situ* detection of cancer-related transcripts in cancer and primary human cell lines

ovarian carcinoma cells

breast carcinoma cells

TERT immortalized fibroblast cells

primary fibroblast culture Larsson et al., 2010

Summary

- Multiplex detection of expressed single nucleotide sequence variants in human and mouse cells and tissue
- Fresh frozen human tissue sections of 4µm thickness
- Detection probes visualized with Cy3, Cy 5, Texas red and FITC
- Quantification counted digitally using BlobFinder software
- compared in situ data with qPCR

~30% detection efficiency for one assay (β -actin) ~15% detection efficiency in multiplex measurements

 Lower detection rates due to interactions between padlock probes and/or cDNA primers

However,

- Only known sequences can be targeted, and
- Only point mutations detected

 Missing is a technique to detect larger transcripts and unknown sequences

In situ sequencing for RNA analysis in preserved tissue and cells

Rongqin Ke^{1,2,5}, Marco Mignardi^{1,2,5}, Alexandra Pacureanu³, Jessica Svedlund¹, Johan Botling², Carolina Wählby^{3,4} & Mats Nilsson^{1,2}

¹Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. ²Department of Immunology, Genetics, and Pathology, the Rudbeck Laboratory, Uppsala University, Uppsala, Sweden. ³Science for Life Laboratory, Centre for Image Analysis, Uppsala University, Uppsala, Sweden. ⁴Imaging Platform, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. ⁵These authors contributed equally to this work. Correspondence should be addressed to M.N. (mats.nilsson@scilifelab.se) or C.W. (carolina@broadinstitute.org).

RECEIVED 20 APRIL; ACCEPTED 20 JUNE; PUBLISHED ONLINE 14 JULY 2013; DOI:10.1038/NMETH.2563

NATURE METHODS | VOL.10 NO.9 | SEPTEMBER 2013 | 857

Rongqin et al., 2013

1st cycle

A – N – N – N- Yellow	
G – N – N – N- Red	
T – N – N – N- Blue	Т – А – Т – Т –
C – N – N – N- Green	T – C –
	T – G –

 $\mathbf{A} - \mathbf{C} - \mathbf{T} - \mathbf{G}$

1st cycle 2nd cycle 3rd cycle 4th cycle

T - A - N - N-BlueT - T - N - N-BlueT - C - N - N-BlueT - G - N - N-Blue

Sequence of interest

1st cycle

A - N - N - N- Yellow

1st cycle blue 2nd cycle 3rd cycle 4th cycle

G - N - N - N- Red C - N - N - N- Green

only this probe binds and gives a blue signal

T - N - N - N - BlueA - C - T - G

Sequence of interest

2nd cycle

N - A - N - N- Yellow

N - T - N - N- Blue

N - C - N - N- Green

N - G - N - N- Red

A - C - T - G

Sequence of interest

1st cycle blue 2nd cycle 3rd cycle 4th cycle

2nd cycle

2nd cycle

N - C - N - N- Yellow

N - T - N - N- Blue

N - C - N - N- Green

1st cycle blue 2nd cycle red 3rd cycle 4th cycle

N – G – N – N- Red	only this probe binds and	
A – C – T – G	gives a red signal	Sequence of interest

3rd cycle

1st cycle blue 2nd cycle red 3rd cycle yellow 4th cycle

N - N - G - N- Red

N - N - T - N- Blue

N - N - C - N- Green

N - N - A - N- Yellowonly this probe binds and
gives a yellow signalA - C - T - GSequence of interest

4th cycle

1st cycle blue 2nd cycle red 3rd cycle yellow 4th cycle green

$$N - N - N - G$$
- Red

N - N - N - T- Blue

N - N - N - A-Yellow

N - N - N - C- Green only this probe binds and gives a green signal Sequence of interest

HER2 positive fresh-frozen breast cancer tissue section gap-fill padlock probe

Her2 positive fresh frozen breast cancer

Rongqin et al., 2013

Gene expression profiling by barcode padlock probe

Rongqin et al., 2013

Expression patterns

HER2 d. ETV4

HER2 d. RPLPO

HER2 d. MYBL2

HER2 cl. SIX1

HER2 d. ST-3

Rongqin et al., 2013

HER2 cl. BAG1

HER2 d. CD68

HER2 d. GAPDH

HER2 d. MUC1

HER2 d. SCUBE2

HER2 d. BIRC5

Maximum number of reads

- 450 cells covering area of 0.16mm²: 11,423 reads (average of 25 reads/cell)
- Covering 5.5% of the area
- Increase of 20% before loss of signal due to overlap of signals
- 270,000 reads per mm²
- Comparison of in situ sequencing data with qPCR and published RNA seq data

Summary

+

- In situ detection of up to 31 short RNA fragments
- Visualizing multiplexed gene expression in human breast cancer tissue sections
- Four-base-pair fragments detectable (4⁴)

-

- Depending on the method, target sequences still have to be determined
- Critical step: detecting every single nucleotide by using different probes
- Efficiency 30%
- Interactions between LNA primers
- Dependent on tissue quality, thickness

Outlook

- Detection of mutations in the microenvironment of tumors and other lesions
- Longer transcripts detectable
- Characterization and identification of tissue without a priori information
- Can be combined with in situ proximity ligation assay to detect interactions or post-translational modifications of proteins

Questions?

Thank you for your attention!