Single-cell genome sequencing

Mario Nuvolone
Technical Journal Club

28t January 2013

University Hospital 7 Institute of
Zurich Neuropathology



nature

Techniques for life scientists and chemists

Journal home > Special Feature = Method of the Year 2013

SPECIAL FEATURE

Method of the Year 2013

Special Feature

« Contents * Commentary
~ Editorial » Methods to Watch

- v News feature

~ Primer

Nature Methods' choice for Method of the Year 2013 is single-cell sequencing. A
collection of articles present the unique considerations related to sequencing single
cells and highlight recent applications in biology and medicine. The Methods to
Watch feature provides a look at possible future Methods of the Year.



EDITORIAL |

Method of the Year 2013

Methods to sequence the DNA and RNA of single cells are poised to transform many areas of

biology and medicine. METHOD OF THE YEAR COMMENTARY | SPECIAL FEATURE |

Dissecting genomic diversity, one cell at a time
Paul C Blainey & Stephen R Quake
Emerging technologies are bringing single-cell genome sequencing into the mainstream; this field has

already yielded insights into the genetic architecture and variability between cells that highlight the
dynamic nature of the genome.

METHOD OF THE YEAR NEWS FEATURE | SPECIAL FEATURE|

Singled out for sequencing

Single-cell genome and transcriptome sequencing methods are generating a fresh wave of biological
insights into development, cancer and neuroscience. Kelly Rae Chi reports. |SPECIAL FEATURE | COMMENTARY METHOD OF THE YEAR

Entering the era of single-cell transcriptomics in
biology and medicine

Rickard Sandberg

Recent technical advances have enabled RNA sequencing (RNA-seq) in single cells. Exploratory studies
have already led to insights into the dynamics of differentiation, cellular responses to stimulation and the
stochastic nature of transcription. We are entering an era of single-cell transcriptomics that holds promise

METHOD OF THE YEAR COMMENTARY | SPECIAL FEATURE '© substantiallyimpact biology and medicine.

The promise of single-cell sequencing

James Eberwine!-2, Jai-Yoon Sul!, Tamas Bartfai® & Junhyong Kim?2*

Individual cells of the same phenotype are commonly viewed as identical functional units of a tissue D
or organ. However, the deep sequencing of DNA and RNA from single cells suggests a more complex | SPECIAL FEATURE | PRIMER
ecology of heterogeneous cell states that together produce emergent system-level function. Continuing

development of high-content, real-time, multimodal single-cell measurement technologies will lead to the

- -
ultimate goal of understanding the function of an individual cell in the context of its microenvironment. Slngle-cell sequenC].ng

A brief overview of how to derive a genome or transcriptome from a single cell.



DNA —> Single-cell genome

Single-cell sequencing

RNA —> Single-cell transcriptome



Single-cell genome sequencing: Why/When?

Current applications:

1. Microorganisms that cannot be cultured

2. Genome heterogenity in tumors

3. Genome heterogenity among different cells of multicellular organisms

4. Genome heterogenity among different cells of a cell line

5. Gametogenesis and prenatal genetic diagnosis/screening



Single-cell genome sequencing: How?

Main steps:
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Single cell isolation
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DNA amplification

(a) linker-adapter PCR (LA-PCR) (b) interspersed repetative sequence PCR (IRS-PCR) (C) primer extension preamplification (PEP-PCR)
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(d) degenerate oligonucleotide primed PCR (DOP-PCR) e) displacement degenerate oligonucleotide primed PCR (D-DOP-PCR)
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(g) single primer isothermal amplification (SPIA)

f) multiple displacement ampl ification {MDA}
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IRS-PCR no no yes no no no yes 1 0 no poor no no 100-1000 50-100
DOP-PCR no no no yes no no yes 1-2 0 yes improved Sigma yes 100-1000+ 50-100
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Blainey FEMS Microbiol Rev 2013



Multiple Displacement Amplification (MDA)
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Blainey FEMS Microbiol Rev 2013
Dean et al. Proc Natl Acad SCIU S A 2002



Multiple Annealing and Looping-based Amplification Cycles (MALBAC)

MALBAC primer Polymerase

Genomic DNA
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Full-amplicon
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Tumour evolution inferred by single-cell sequencing
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Tumor-derived single cell genome sequencing
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lllumina Libraries

v

a) Single cell isolation from tumor

b-d) DAPI-stained nuclei
(subpopulations based on ploidy) FACS
sorted in 96-well plate with lysis buffer

e) Whole genome amplification

f) Sonication to remove specific 28 bp
adapters

g) lllumina single-end libraries are
prepared

h) Each library is sequenced on
individual flow-cell lanes

H —3 =6% of genome coverage per cell



Tumor-derived single cell genome sequencing: WGA

Through Sigma GenomePlex® WGA kit l Partial Fragmentation
Random fragmentation of gDNA and generation of
PCR-amplifiable OmniPlex® Library molecules l Ampiiiable Units

flanked by universal priming sites N

mniPlex Library
The OmniPlex® library is then amplified using PCR with Universal Primers
universal oligonucleotide primers and a limited -
number of cycles

Amplified
OmniPlex
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Require ng of gDNA with yields of 5-10 g
following PCR

Blood

i

Sequencing Population studies

Suitable with a variety of purified DNA samples
(whole blood, buccal swabs, plant sources, FFPE)

Genotyping Target discovery

PCR Q-PCR Target validation

Suitable for various applications (TagMan®, STR,
SNP, Sequencing, CGH, Microarrays)
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Copy number

Copy number

Tumor-derived single cell genome sequencing: validation ()
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Tumor-derived single cell genome sequencing: validation (ll)
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Analysis of 100 single cells from a polygenomic breast tumor

F1 F2 F3
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Histologic analysis:
- 63% normal and 37% tumour cells
- Heavily infiltrated with leukocytes

FACS analysis:

- Hypodiploid fraction (F1) exclusive to sectors 1-3

- Diploid 2N fraction (F2) in all sectors (mainly lymphocytes)
- Two sub-tetraploid fractions (F3 andF4) in sectors 4—6

-3 100 single cells from multiple sectors and ploidy fractions sequenced.



Euclidean distance

Analysis of 100 single cells from a polygenomic breast tumor
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3 major ‘advanced’ tumour subpopulations (H, AA and AB) with highly clonal with complex
genomic rearrangements, probably representing three clonal expansions

Each subpopulation is related to the others by many shared genomic alterations, but they
have also diverged and developed distinct attributes



Analysis of 100 single cells from a monogenomic breast tumor and its liver metastasis
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Histologic analysis:
- 50% normal and 50% tumour cells
- Low leukocyte infiltration

FACS analysis:

- Diploid 2N fraction (F1) both in primary and metastatic tumor in all sectors
- Tetraploid fraction (F2) both in primary and metastatic tumor in all sectors

-3 100 single cells from multiple sectors and ploidy fractions sequenced.



Analysis of 100 single cells from a monogenomic breast tumor and its liver metastasis

Tumour subpopulations

Euclidean distance
w
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4r . Primary diploids ]
o Primary pseudodiploids
or . Primary aneuploids i
. Metastatic diploids
6 @ \ctastatic aneuploids N
1 Cell number 100

- Primary tumour formed by a single clonal expansion of an aneuploid cell

- One of the cells from this primary tumor subsequently seeded the metastatic tumour with
little further evolution



Tumor single cell sequencing — summary and future applications

Current achievements:
- Proof-of-principle for the study of tumor genomic heterogeneity and possible evolution

Future applications:

Scarce clinical samples Circulating tumour cells Rare chemo resistant cells

Navis & Hicks. Genome Med 2011
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Genome-wide copy number analysis of single cells

Timour Baslan'?, Jude Kendall', Linda Rodgers', Hilary Cox', Mike Riggs', Asya Stepansky’, Jennifer Troge',
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Step 1 (options A & B)
Nuclei preparation

from tissue or cell line
material for flow sorting

Steps 2-8

Sorting single cells
into 96-well plate

Steps 9-30

WGA amplification of
single-cell DNA,
purification and
quantification

Steps 31-35
I
Sonication of WGA DNA I — —

Steps 36-65

lllumina library
preparation and
sequencing

Figure 1 | Schematic of the experimental workflow of SNS. Step numbering
corresponds to the Steps of the PROCEDURE. The FACSAria image is courtesy
of Becton, Dickinson and Company; reprinted with permission. HiSeq2000
image is courtesy of Illumina.
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Genome Analyses
of Single Human Oocytes
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MALBAC of single human oocytes: goal
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Single-oocyte MALBAC sequencing

PB1 (2C) Micropipette
PB2 (1C)

Female pronucleus
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Male pronucleus

(1C) Zona pellucida

Micromanipulation Single cell lysis
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High-throughput MALBAC amplification
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Summary of sequencing information

Dorior | (N9 | sequenced | sequenng | A*%° | soquening | Summed | No.ofphasod | No ofprases
ID polar bodies |depth for each depth for each .

oocytes | _ . pronuclei| single cell (X) | COverage | o o- ) | coverage each donor single cell
S01 14 35 0.9 35.6% 31.6 93.8% | 1,092,055 559,567
S02 5 14 0.4 22.5% 5.4 77.4% 512,620 247 807
S03 15 0.4 22.1% 5.8 79.3% 512,149 241,603
S04 11 0.4 20.5% 3.9 69.6% 307,583 168,007
S05 | 12 31 0.9 34.2% 26.5 94.2% | 1,046,939 527,501
S06 8 20 0.7 30.8% 14.1 90.1% 721,263 428,383
S07 6 16 0.8 32.8% 12.1 88.4% 675,195 452,225
S08 | 15 41 0.9 36.5% 36.7 96.6% | 1,284,846 621,709
Aldvg| 70 183 0.7 31.7% 17.0 86.2% 769,081 405,850

Oocytes from 8 young healthy donors

isolated with laser-assisted micromanipulation

Fertilization performed by intracytoplasmic sperm injection (ICSl)

hetSNPs determined using single-cell sequencing data of all oocytes of a donor

First and second polar bodies (PB1 and PB2) and, for verification, female pronuclei (FPN)




Phasing of donor’s hetSNPs
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- Haplotype determined based onhaploid PB2 using two independent algorythms

- 91-95% hetSNPs confidentially phased for each donor at the chromosome level



Crossover inference
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- Crossovers on each chromosome were inferred based on the phased haplotype and on
sequencing data using a hidden Markov Model



Distribution characteristics of crossovers in human oocytes
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Deduction of female pronucleus haplotype: principle

PB1 PB2
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Deduction of female pronucleus haplotype
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91% of predicted haplotype for FPN were correct



Identification of maternal Mendelian diseases

Table 1. Deduction of Mendelian Disease-Associated SNVs in Female Pronuclei of Donor S08

Oocyte ID Gene Name

AGL (C—T) GP9 (G—A) HPD (C—T)

PB1 PB2 FPN(P) FPN(C) PRI ___PR> FEPN(® FPN(C) PB1 PB2 FPN(P) FPN(C)
S0801 NN N T T NN N G G TN C c c
S0802 NN N C © NN N G G NN T T T
S0803 NN N T T NN N G G NN C © ©
S0806 NN C C © NN N A A NN N © ©
S0807 NN N c c NN N A A NN N c c
S0808 CN T C © NN N A A NN N © ©
S0809 c/c N T T NN N G G NN T © ©
S0811 NN T T T NN N A A NN N © ©
S0812 cc T T T NN N G A cT N T T
S0813 NN C T T NN N G G NN T © ©
S0815 NN N C © NN N A A NN N T T

For this donor, the corresponding genotypes for 11 FPNs of the oocytes, which have all the PB1, PB2, and FPN recovered and sequenced, are
predicted by the haplotype deduction. The “N” represents the alleles that are not covered by single-cell low-depth sequencing. The underlined bases
represent SNVs associated with Mendelian diseases. A represents the allele that could not be amplified by locus-specific PCR from single-cell
MALBAC product. Although some SNP loci are not covered by low-depth sequencing in polar bodies, the genotype of FPN can still be accurately
predicted by the haplotype information. See also Figure S5 and Table S5.

- Screen for undesirable alleles predicted to be in female pronucleus

- Predicted alleles were confirmed by Sanger sequencing of the MALBAC product



High-resolution and accurate deduction of aneuploidies
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MALBAC for oocytes — summary and future improvements

Current achievements:

- First comprehensive analysis of female meiosis recombination (included detailed analysis of
chromosome and chromatide interference)

- Proof-of-principle application for prenatal genetic screen in in vitro fertilization for the
unbiased identification of aneuploidies and disease-associated alleles without touching the
growing embryo

Current limitations and future improvements:

- Paternal-inherited abnormalities are not detected
- The same procedure can be applied to blastocysts

- Expensive procedure
- Sequencing and analysis costs are expected to further decrese



ARTICLES VOLUME 31 NUMBER 12 DECEMBER 2013 NATURE BIOTECHNOLOGY

nature
biotechnology

Massively parallel polymerase cloning and genome
sequencing of single cells using nanoliter microwells
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Microwell Displacement Amplification System: MIDAS

_ 255 wells
16 arrays per slide per array
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All liquid handling procedures (cell seeding, lysis, DNA denaturation, neutralization and

addition of amplification master mix) require one pump of a pipette per step per array
- Working volume: 12 nl/well



MIDAS: seeding

1 cell/well seeeding:
Most wells should have 1 cell
26% of wells could have more than 1 cell

0.1 cell/well seeeding:
Most well should be empty
0.5% of wells could have more than 1 cell

—> 0.1 cell/well seeding used for subsequent analyses



MIDAS: real time DNA amplification

1 hour 2 hours 3 hours 4 hours
5 hours 6 hours 7 hours 8 hours

- SYBR Green I-labeled amplicons followed in real-time

- Continuing growing until saturation (after 5-6 h)

- Amplicons are randomly distributed, in line with random seeding

- No amplicons in abutting wells, excluding inter-well contamination



MIDAS: amplicon extraction

Before Extraction After Extraction

- Successful removal of desired amplicon with micropipette
- Performed manually (=10 extraction/hour)



Generation of a near-complete assembly from single E. coli

MIDAS sequencing of 3 individual E.coli cells: MIDAS vs MDA sequencing of individual E.coli cells:
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With respect to MDA:
- 98-99% of the genome sequenced at >1x coverage - Lower amplification bias
- =90% of the genome was correctly assembled de novo - Higher genome coverage with less sequencing

- >96% E.coli genes correctly annotated



Identification of copy number variations in single neurons

MIDAS b ~ In-tube MDA
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- Neuronal nuclei FACS-sorted from post-mortem brain of an invididual with Down syndrome
and from a control subject

- MIDAS, but not in-tube MDA, could correctly identify Chr. 21 trisomy



MIDAS - summary and future improvements

Current achievements:
- Successful assembly of E.coli genome
- Successful identification of CNVs in neurons
Current limitations and future improvements:
- Only 10% of wells are exploited for amplification/sequencing due to low cell seeding
- Increasing cell seeding density and implementing fluorescence monitoring of

amplification to exclude wells with >1 cell or with cross-contamination from
neighboring wells

- Access to microfabrication facility required
- Commercial availability of hydrophilic microwell arrays

- Amplicon extraction performed manually
- Implementing robotic automation for micropipetting



Cell

Single-cell genome sequencing: what next?

Further refinements and wider applications

Integration of:

Assay that transforms a
cell property into a DNA

library reflecting it
T

Cell

Assays that transform each
cell property P;to a DNA
library reflecting P,

Single-cell genomics
Single-cell transcriptomics
Single-cell epigenomics
Single-cell proteomics

DNA library

MFMFAT AT AF AFAF AT AT

((@ APPLICATIONS OF NEXT-GENERATION SEQUENCING

Single-cell sequencing-based
technologies will revolutionize
whole-organism science

DNA sequencer

Sequence data

GATCGATCATTGCTAGCTC

MFMFAT AT AFAFAF AT AT AT > TACGTAGCTAGCTAGCTAG

N NNTNTNT NN NN NN
MFAFAFAFAFAFAFAFAFNF

DNA libraries

MPMFAT AT AT AT AFAFAFAIC
MFMPAT AT SAFAMFAF AT AT
NNTNTN SN NN TN TN NN
MFMFATAFAFAFAF AT AFAFC

MFMFATAFAFAFAF AT AFAF
MPMPAF AT AT AFAF AT AT
MPMFAFAFAFAFAFAF AT
MFNFAFAFAFAFAFAFAFAF

MPMPATAFAFAFAF AT AT
MFMPAFAFAFAFAFATAF A
MRMFATAFAFAFAFAFAFAFC
MFNFAFAFAFAFAFAFAFAF

Shapiro et al. Nat Rev Genet 2013

DNA sequencer
—

CATAGCTAGCCATAGCTTA
ATCGCTAGCTATTCAGCTC

Sequence data

GATCGATCATTGCTAGCTC
TACGTAGCTAGCTAGCTAG
CATAGCTAGCCATAGCTTA
ATCGCTAGCTATTCAGCTC
GCTAGCTATAGCTCTAGCT
AGCATTCGATCTAGCTATG
TTGCTATGCTATCGACTAG
CTAGCTATCGCTCTACGAC
TGACTGCTTAGCTATTCAG
CTC GCTAGCTATAGCTCT
AGCATTCGATCTAGCTATG
CTGCTATGCTATCAGCGAT
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