A third-generation method enables visualization of epigenetic marks in single cells

12.02.2013

Kristin Fritsch
Methods currently use for standard protein detection

- 2D gel electrophoresis
- Mass spectrometry
- ELISA
- Western blotting

not sensitive enough to detect small amounts of protein
first-generation method – immuno PCR

- Detection of small amounts of protein \((T.\ Sano,\ Science\ 1992)\)

- capture of antigen (direct on the plate or indirect by a capture molecule)
- recognition of the antigen by a detection antibody
- reporter DNA was bound using streptavidin
- reporter DNA was amplified using PCR
- gel electrophoresis of amplified DNA

first-generation method – immuno PCR

- avoidance of non-specific binding
- can performed under «real-time PCR» conditions
- increase in protein detection sensitivity by approximately 1000-fold
- usability for medically relevant antigens, e.g. Hepatitis B surface antigen
- detection of antigens from unpurified samples, e.g. serum

The immuno-PCR provides an ultrasensitive technology which combines the molecular specificity of antibodies with the sensitivity of the PCR
second-generation method - proximity ligation assay (PLA)

- DNA-based protein detection assay (S. Fredriksson et al., Nature Biotechnology 2002)
- *in vitro* analysis of proteins and other macromolecules

- pair of DNA aptamers binds to target protein
- each aptamer with different DNA-sequence extension
- binding of aptamer pair brings ends of oligonucleotide extensions into proximity
- connector oligonucleotide hybridize to both ends
- amplification of PCR template
second-generation method - proximity ligation assay (PLA)

➢ *in vitro* analysis of proteins and other macromolecules
second-generation method - proximity ligation assay (PLA)

- assay can be performed in a homogenous format
- suitable for automation
- potential for application in clinical laboratories
- aptamers can be replaced by antibodies
- difficult to adapt method to small organic molecules or small peptides

method allows the detection and quantification of minute amounts of a specific protein but can not be used for quantifying small molecules
In situ proximity ligation assay (ISH-PLA)

- localization of protein-protein interactions at single molecule resolution

 (O. Söderberg et al., Nature Methods 2006)
In situ proximity ligation assay (ISH-PLA)

- localization of protein-protein interactions at single molecule resolution
 (O. Söderberg et al., Nature Methods 2006)

- Proximity probe binding

- circularization and ligation of connector oligonucleotides
 (O. Söderberg et al., Methods 2008)
In situ proximity ligation assay (ISH-PLA)

- localization of protein-protein interactions at single molecule resolution

- Rolling circle amplification

- Detection of rolling circle products

(O. Söderberg et al., Methods 2008)

c-Myc/Max heterodimers in cultured human fibroblasts
In situ proximity ligation assay (ISH-PLA)

- analyses of interactions among any proteins for which antibodies are available
- assay can be performed in all samples of cells and tissues
- useful to monitor the effect of pharmaceutical treatment
- *in situ* PLA may find important uses in medical research, drug development, and clinical diagnostics

allows highly specific imaging of proteins and protein complexes in tissue samples
third-generation method - ISH-PLA

- detection of Histone modifications at single genomic locus

 (D. Gomez et al., Nature Methods 2013)

- biotinylated probe target the gene of interest
- Another probe target chromatin modification
- 2nd Antibody with PLA
- Rolling circle amplification
- Detection of rolling circle products

Andrew P Feinberg, Nature Methods 2013
Detection of histone modifications at specific gene loci in single cells in histological sections

Delphine Gomez¹,², Laura S Shankman¹,², Anh T Nguyen¹ & Gary K Owens¹
histone structure

DNA

H2A H2B

H4 H3

Core of 8 Histones

Nucleosome

H1
post-translational histone protein modifications that can influence epigenetic regulation of gene transcription

Manuel Rodríguez-Paredes & Manel Esteller, Nature Medicine 2011
ISH-PLA detection of H3K4me2 at MYH11 locus
In human coronary arteries
(highly relevant to atherosclerotic disease)
third generation method - ISH-PLA – detection of Histone modifications at single genomic locus
Compatibility between PLA and chromatin structure

Estimated distance between two biotinylated ATPs within the DNA strand ~ 2 nm
human coronary arteries

Peter Libby, Nature 2002
ISH-PLA detection in adventitial small arteries

→ **MYH11** H3K4me2 PLA+ within ACTA2+ SMCs
ISH-PLA negative control in an adventitial vessel of human carotid artery sections

MHY11 probe required for PLA amplification
ChIP and ISH-PLA analyses showed H3K4me2 enrichment of MYH11 locus exclusively in SMCs.
Assessment of eYFP expression in *Myh11 CreERT2 ROSA26 STOP flox eYFP+/+* and eYFP−/− mice

SMC lineage–tracing system

- **Myh11 promoter**
- **ROSA26 Locus**

Tamoxifen

- **Cre-ERT2**
- **STOP**

Recombination in mature SMCs

SMC-EYFP+/+ mice

ACTA2/EYFP

- - Tamoxifen
- + Tamoxifen
EYFP expression in heart tissue sections

→ high-efficiency EYFP expression exclusively in SMCs
ISH-PLA analysis of aortas from SMC-\textit{EYFP}_{+/-} mice

→ high-efficiency EYFP expression exclusively in SMCs
Cdh5 H3K4dime ISH-PLA assays

Human cartilaginous arteries

SMC-eYFP^{+/+} mice

→ ISH-PLA could be adapted to additional gene loci
ISH-PLA analysis of human carotid artery sections

ISH-PLA could be adapted to additional histone modifications
ISH-PLA analysis of human brain sections

ACTA2+ SMCs

Non-SMCs

ISH-PLA could be adapted to additional tissues
PDGF induces phenotypic switching of SMCs

- marked reductions in SMC marker expression
- reduced H4 acetylation
SMC phenotypic switching with the pro-atherogenic oxidized phospholipid POVPC
Phenotypically modulated SMCs (EYFP+ MYH11−) in lesions of SMC-EYFP+/+ ApoE−/− mice
Phenotypically modulated SMCs (EYFP+ MYH11−) in lesions of SMC-\textit{EYFP}+/+ \textit{ApoE}−/− mice
MYH11 H3K4me2 ISH-PLA of human coronary arteries

atherosclerotic lesions are ACTA2-, MYH11- and MYH11 H3K4me2+
MYH11 H3K27me3 ISH-PLA in human coronary atherosclerotic lesions

atherosclerotic lesions are ACTA2- and MYH11 H3K27me3+
epigenetic regulation on the *MYH11* promoter in mature SMCs, phenotypically modulated SMCs and non-SMCs *in vivo*
conclusion

- ISH-PLA method can reliably and specifically detect histone modifications at specific gene loci in single cells in human and mouse tissue sections.

- Identification of a cell type- and locus-specific histone modification in cells in vivo within intact tissue sections in a complex multicellular tissue specimen.

- H3K4me2 of the MYH11 gene locus represents a unique and specific epigenetic signature of cells of the SMC lineage in vivo.

- PLA methodology is easily adaptable to multiple gene loci and histone modifications.

↓

- Methodology has promise for broad applications in the study of epigenetic mechanisms in complex multicellular tissues in development and disease.
Thanks for your attention

(O. Söderberg et al., Nature Methods 2006)