Proteasome, Neurodegeneration, and Prions

Journal Club
20.08.2019
Interactive Journal Club - Outline

• Proteasome basics
• Proteasome in neurodegenerative diseases
• Proteasome in prion biology
 • PrPC and the Proteasome
 • PrPSc and the Proteasome
Proteasome basics

Two major ways to degrade proteins

Lysosomal pathways
- Degrades most membrane and endocytosed proteins
- Can also degrade cytosolic proteins through autophagy
Proteasome basics

Two major ways to degrade proteins

Ubiquitin–proteasome system
- Responsible for degrading most intracellular, soluble proteins
- can also degrade transmembrane proteins if they are extracted from the membrane into the cytosol
Proteasome basics

General proteasome composition

19S regulatory particle (lid)
- Responsible for identification of proteins that are targeted to the proteasome
- Responsible for deubiquitination of tagged proteins so that they can enter the catalytically active core
- Prevents unregulated access to the proteolytic core

20S core particle (base)
- Catalytically active subunits stacked in four heteroheptameric rings
- Certain subunits have proteolytic functions; breakdown proteins to amino acid chains, which will be degraded further by aminopeptidases
Proteasome basics

General proteasome composition

Six ATPases arranged in a hexameric ring within the base of the RP, which couples ATP hydrolysis to substrate unfolding and translocation through its channel pore.
Proteasome basics

Proteasome mode of action

If a protein is captured and deubiquitinated, a conformational change leads to the opening of the lid to allow access to the proteolytic core.

Mediated by a HbYX motif on specific subunits of the lid.

https://www.youtube.com/watch?v=TgOe7aPVpoM
Proteasome in neurodegeneration

- UPS as the main mechanism for protein degradation of cytosolic proteins
- Aggregates are thought to be too big to be degraded by it
- Macroautophagy as the main aggregate degradation pathway
“Under normal conditions of substrate synthesis and basal autophagy, the direction of the equilibrium of an aggregate-prone protein is towards aggregate formation. If substrate synthesis is stopped or clearance of the soluble/oligomeric forms is enhanced (for instance, by autophagy) then this equilibrium can be reversed and aggregates are indirectly cleared”
Proteasome in neurodegeneration

Other relations to neurodegeneration?

- Strong correlation between aging and decrease in proteasomal activity
- Certain proteins related to neurodegenerative diseases are proteasomal substrates (e.g. Tau, a-syn, Htt)
- Mutations of related proteins, or inhibition of the proteasome can lead to neurodegeneration (e.g. PARKIN1 as an E3 ligase)

- Aggregates linked to neurodegeneration are thought to inhibit proteasomal function
Proteasome in other neurodegenerative diseases

A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers

Tiffany A. Thibaudeau¹, Raymond T. Anderson¹ & David M. Smith¹
Proteasome in other neurodegenerative diseases

Diagram a: Amyloid-β, α-Synuclein, or Huntingtin-Q50

- Monomers
- Mixed aggregates

Diagram b:

- Spin
- Soluble aggregates
- Insoluble aggregates

Diagram d:

- Aβ (monomeric μM)
- Proteofibrils (Aβ-PF)
- Intermediate oligomers (Aβ-iO)

Diagram e:

- Aβ
- α-Syn
- Htt-5Q0

Graphs:

- Enzyme activity by 20S (% of control)
- Buffer, Aβ-1O, + α-oligomer (A11) antibody
Proteasome in other neurodegenerative diseases

Different oligomers related to neurodegeneration can inhibit the 20S core part of the proteasome via impairment of substrate entry.

If the α3-20S core subunit was mutated to have a constitutively open proteasome, inhibitory effect was abolished.
Proteasome in other neurodegenerative diseases

A small peptide mimicking the HbYX motif could decrease the effect of proteasomal inhibition
Intermediate oligomers of α-syn, Aβ and Htt can impair the proteasomal function by inducing closed gate structure.
Latest research

Filamentous Aggregates Are Fragmented by the Proteasome Holoenzyme

Aggregate length measured by total internal reflection fluorescence microscopy: TIRFM
Study claims that ATPase activity of the proteasome (which is totally unrelated to the proteolytic part), is able to fragment filamentous fibrils.
Proteasome in other neurodegenerative diseases

To summarize:

- Oligomeric (A11+) species of different disease relevant proteins can inhibit the proteasome via interacting with the 20S core part, preventing substrate entry
 - Proteasomal inhibition might lead to a vicious cycle in proteinopathies, especially with regards to proteins that are normally a substrates of the proteasome

- Inhibition of the proteasome potentially elicits toxic effects

- Effect can be alleviated by applying and anti-A11 antibody or a small peptide mimicking the HbYX motif enhancing open-gate confirmation

- ATPase activity of the proteasome enhances the fragmentation of fibrils
 - Potentially unanticipated function of the proteasome as a disaggregase
Proteasome in prion biology - PrP^C

- PrP^C as a cell membrane protein is mainly degraded by the lysosomal pathway

Controversial findings:

- Ma & Lindquist (2001) and Yedida (2001) showed that treatment of cells with different proteasome inhibitors was leading to PrP^C accumulation in the cytoplasm. (Drisaldi (2003), showed an increase of PRNP mRNA upon proteasomal inhibition)

- Yedida also showed the existence of ubiquitinated PrP^C (however in CHO cells expressing the human PrP...)

- PrP^C might partially be a proteasomal substrate and reach the cytoplasm via different speculative mechanisms such as retrotranslocation. However, the question remains controversial
- PrPSc has been shown to be localized at least partially in the cytoplasm and therefore might interact with the proteasome.

- Kristiansen (2005) showed cytosolic aggresome formation containing PrPSc after mild proteasome inhibition of prion-infected cells.

=> Proteasomal inhibition does not seem to be beneficial for prion clearance, either related to enhanced PrPC production or via direct or indirect mechanisms.
Proteasome in prion biology - PrPSc

However, additional effect of prions on the Proteasome (Kristiansen et al. (2007))

Prion infection decreased proteasomal activity in two different prion infected cell lines (data only shown for one), which could be abrogated by applying an anti-PrP antibody treatment.
However, additional effect of prions on the Proteasome (Kristiansen et al. (2007))

Accumulation of the fluorescent GFP reporter (for proteasomal activity) occurs in prion-infected UbG76V-GFP expressing N2aPK-1 cells or lactacystin-treated (50 μM) N2aPK-1 cells.

ScN2aPK-1 cells took twice as long as N2aPK-1 cells to clear 50% of the accumulated UbG76V-GFP.
Proteasome in prion biology - PrP$^\text{Sc}$

However, additional effect of prions on the Proteasome (Kristiansen et al. (2007))

Prion infection inhibited degradation of the UbG76V-GFP reporter.

Proteasomal inhibition by prions in vivo.
Proteasome in prion biology - PrPSc

Time course experiment of prion inoculated mice for proteasomal activity (McKinnon et al (2016))

<table>
<thead>
<tr>
<th></th>
<th>8 wpi</th>
<th>12 wpi</th>
<th>18 wpi</th>
<th>23 wpi</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrPSc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UbG76V-GFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prion infection inhibited degradation of the UbG76V-GFP reporter already early on

Proteasomal inhibition by prions \textit{in vivo}
Proteasome in prion biology - \PrP^{Sc}

Proteasomal inhibition in scCAD5 (McKinnon et al (2016))

Also, prion infected scCAD5 show higher amount of \PrP^{Sc}, which can be abrogated by the treatment with a «proteasomal activator»
Further studies showed, that PrPSc directly interacts with the 20S core part of the proteasome, thereby preventing substrate entry.

The same effect could be elicited by using β-PrP, a predominantly β-sheet species with similar physico-chemical properties to PrPSc.

Novel findings from the neurodegenerative field have already been known for prions since years...
To summarize:

- The involvement of the proteasomal in the degradation of PrPC remains controversial
 - Parts of PrPC might be degraded by the proteasome upon retrotranslocation
 - Proteasomal inhibitors lead to accumulation of PrPC in the cytoplasm
 - There are ubiquitinated species of PrPC (in CHO cells expressing human PrP)

- Prions inhibit the proteasomal activity \textit{in vitro} and \textit{in vivo} via direct interaction with the 20S core part, preventing substrate entry
- Inhibition of the proteasome could potentially elicit neurotoxic effects

⇒ If PrPC is partially a proteasomal substrate, again, inhibition of the proteasome could lead to a vicious cycle

⇒ If prions inhibit the proteasome, regulation of subunits could lead to dishinhibition and restore normal proteasomal function => cells can work normally and clear prions via direct or indirect mechanisms

⇒ If Proteasome has a disaggregase function, regulation of subunits could decrease/increase this function
References: